Implementation of continuous in lieu of batch upstream processing (USP) and downstream process (DSP) for the production of recombinant therapeutic protein is a significant paradigm change. The present report describes how the first kilograms of monoclonal antibody were produced with equipment originally designed for batch operations while using continuous manufacturing processes and principles. Project timelines for the delivery of clinical material have driven this ambition and helped the transition.
View Article and Find Full Text PDFHigh volumetric productivities can be achieved when perfusion processes are operated at high cell densities. Yet it is fairly challenging to keep high cell density cultures in a steady state over an extended period. Aiming for robust processes, cultures were operated at a constant biomass specific perfusion rate (BSPR) in this study.
View Article and Find Full Text PDFUnlabelled: Surface coatings delivering BMP are a promising approach to render biomaterials osteoinductive. In contrast to soluble BMPs which can interact with their receptors at the dorsal side of the cell, BMPs presented as an insoluble cue physically bound to a biomimetic matrix, called here matrix-bound (bBMP-2), are presented to cells by their ventral side. To date, BMP-2 internalization and signaling studies in cell biology have always been performed by adding soluble (sBMP-2) to cells adhered on cell culture plates or glass slides, which will be considered here as a "reference" condition.
View Article and Find Full Text PDFThe rapid and effective bone regeneration of large non-healing defects remains challenging. Bioactive proteins, such as bone morphogenetic protein (BMP)-2, are proved their osteoinductivity, but their clinical use is currently limited to collagen as biomaterial. Being able to deliver BMP-2 from any other biomaterial would broaden its clinical use.
View Article and Find Full Text PDFUnderstanding how cells integrate multiple signaling pathways to achieve specific cell differentiation is a challenging question in cell biology. We have explored the physiological presentation of BMP-2 by using a biomaterial that harbors tunable mechanical properties to promote localized BMP-2 signaling. We show that matrix-bound BMP-2 is sufficient to induce β3 integrin-dependent C2C12 cell spreading by overriding the soft signal of the biomaterial and impacting actin organization and adhesion site dynamics.
View Article and Find Full Text PDFFree-standing (FS) membranes have increasing applications in the biomedical field as drug delivery systems for wound healing and tissue engineering. Here, we studied the potential of free-standing membranes made by the layer-by-layer assembly of chitosan and alginate to be used as a simple biomimetic system of the periosteum. The design of a periosteum-like membrane implies the elaboration of a thick membrane suitable for both muscle and bone formation.
View Article and Find Full Text PDFIn the cellular microenvironment, growth factor gradients are crucial in dictating cell fate. Towards developing materials that capture the native microenvironment we engineered biomimetic films that present gradients of matrix-bound bone morphogenetic proteins (BMP-2 and BMP-7). To this end layer-by-layer films composed of poly(L-lysine) and hyaluronan were combined in a simple microfluidic device enabling spatially controlled growth factor diffusion along the film.
View Article and Find Full Text PDFImmobilization of bone morphogenetic proteins (BMP) onto material surfaces is a promising, but still challenging, strategy for achieving dependable and consistent osseointegration of long-term metal implants. In the present study, we have developed an osteoinductive coating of a porous titanium implant using biomimetic polyelectrolyte multilayer (PEM) films loaded with BMP-2. The amount of BMP-2 loaded in these films was tuned - over a large range - depending on the cross-linking extent of the film and of the BMP-2 initial concentration.
View Article and Find Full Text PDFEfficient delivery of growth factors is one of the great challenges of tissue engineering. Polyelectrolyte multilayer films (PEM) made of biopolymers have recently emerged as an interesting carrier for delivering recombinant human bone morphogenetic protein 2 (rhBMP-2 noted here BMP-2) to cells in a matrix-bound manner. We recently showed that PEM made of poly(l-lysine) and hyaluronan (PLL/HA) can retain high and tunable quantities of BMP-2 and can deliver it to cells to induce their differentiation in osteoblasts.
View Article and Find Full Text PDFThe use of surface coating on biomaterials can render the original substratum with new functionalities that can improve the chemical, physical, and mechanical properties as well as enhance cellular cues such as attachment, proliferation, and differentiation. In this work, we combined biocompatible polydimethylsiloxane (PDMS) with a biomimetic polyelectrolyte multilayer (PEM) film made of poly(L-lysine) and hyaluronic acid (PLL/HA) for skeletal muscle tissue engineering. By microstructuring PDMS in grooves of a different width (5, 10, 30, and 100 μm) and by modulating the stiffness of the (PLL/HA) films, we guided skeletal muscle cell differentiation into myotubes.
View Article and Find Full Text PDFEfficient and effective delivery of poorly water-soluble drug molecules, which constitute a large part of commercially available drugs, is a major challenge in the field of drug delivery. Several drugs including paclitaxel (PTX) which are used for cancer treatment are hydrophobic, exhibit poor aqueous solubility and need to be delivered using an appropriate carrier. In the present work, we engineered PTX-loaded polyelectrolyte films and microcapsules by pre-complexing PTX with chemically modified derivative of hyaluronic acid (alkylamino hydrazide) containing hydrophobic nanocavities, and subsequent assembly with either poly(l-lysine) (PLL) or quaternized chitosan (QCHI) as polycations.
View Article and Find Full Text PDFDelivering rhBMP-2 (recombinant Bone Morphogenic Protein-2) at low but therapeutically efficient dose is one of the current challenges for bone tissue repair. In this context, Polyelectrolyte Multilayer films (PEM) represent an attractive rhBMP-2 carrier due to their ability to protect proteins from denaturation and to coat a wide variety of materials with complex geometry. Herein, we coated macroporous TCP/HAP granules with a biopolymeric PEM film to deliver rhBMP-2 in a "matrix-bound" manner.
View Article and Find Full Text PDF