Publications by authors named "Raphael Gaudin"

Extracellular vesicles (EVs) are small membranous carriers of protein, lipid, and nucleic acid cargoes and play a key role in intercellular communication. Recent work has revealed the previously under-recognized participation of endoplasmic reticulum (ER)-associated proteins (ERAPs) during EV secretion, using pathways reminiscent of viral replication and secretion. Here, we present highlights of the literature involving ER/ERAPs in EV biogenesis and propose mechanistic parallels with ERAPs exploited during viral infections.

View Article and Find Full Text PDF
Article Synopsis
  • Adult brain explants (OPABs) can be cultured to study synaptic plasticity, which is important for understanding brain functions.
  • The research involved stimulating these explants on a 3D microelectrode array to examine changes in neuronal connections over several days.
  • Results showed that while immediate synaptic changes didn't occur, after a few days, significant responses were noted, indicating that these brain tissues retain the ability for synaptic modulation, especially influenced by dopamine.
View Article and Find Full Text PDF

Human circulating monocytes are established targets for Zika virus (ZIKV) infection. Because of their important migratory properties toward any tissues, including the central nervous system (CNS), a better understanding of the mechanisms underlying monocyte transmigration upon ZIKV infection is required. Here, we monitored adhesion, migration and transmigration properties of monocytes exposed to ZIKV.

View Article and Find Full Text PDF

Transmigration of circulating monocytes from the bloodstream to tissues represents an early hallmark of inflammation. This process plays a pivotal role during viral neuroinvasion, encephalitis, and HIV-associated neurocognitive disorders. How monocytes locally unzip endothelial tight junction-associated proteins (TJAPs), without perturbing impermeability, to reach the central nervous system remains poorly understood.

View Article and Find Full Text PDF

HIV-1 entry into CD4 T lymphocytes relies on the viral and cellular membranes' fusion, leading to viral capsid delivery in the target cell cytoplasm. Atg8/LC3B conjugation to lipids, process named Atg8ylation mainly studied in the context of macroautophagy/autophagy, occurs transiently in the early stages of HIV-1 replication in CD4 T lymphocytes. Despite numerous studies investigating the HIV-1-autophagy interplays, the Atg8ylation impact in these early stages of infection remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • - SARS-CoV-2 infection can cause both immediate and long-lasting neurological issues, complicating the understanding of the virus's impact on the brain after COVID-19.
  • - Research using brain models and samples shows that while SARS-CoV-2 can infect neural cells, the extent is low, but it can lead to abnormal changes in synapses and electrical activity in the brain.
  • - The study found that treating brain organoids with a specific compound could help restore normal brain activity and reduce the negative effects caused by the virus at synapses, highlighting potential avenues for understanding and treating COVID-19-related brain complications.
View Article and Find Full Text PDF

Viral neuroinfections represent a major health burden for which the development of antivirals is needed. Antiviral compounds that target the consequences of a brain infection (symptomatic treatment) rather than the cause (direct-acting antivirals) constitute a promising mitigation strategy that requires to be investigated in relevant models. However, physiological surrogates mimicking an adult human cortex are lacking, limiting our understanding of the mechanisms associated with viro-induced neurological disorders.

View Article and Find Full Text PDF

The morphogen Sonic Hedgehog (SHH) plays an important role in coordinating embryonic development. Short- and long-range SHH signalling occurs through a variety of membrane-associated and membrane-free forms. However, the molecular mechanisms that govern the early events of the trafficking of neosynthesised SHH in mammalian cells are still poorly understood.

View Article and Find Full Text PDF

Stem cell-derived cerebral organoids are artificially grown miniature organ-like structures mimicking embryonic brain architecture. They are composed of multiple neural cell types with 3D cell layer organization exhibiting local field potential. Measuring the extracellular electrical activity by means of conventional planar microelectrode arrays is particularly challenging due to the 3D architecture of organoids.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a Gram-negative bacterium causing morbidity and mortality in immuno-compromised humans. It produces a lectin, LecB, that is considered a major virulence factor, however, its impact on the immune system remains incompletely understood. Here we show that LecB binds to endothelial cells in human skin and mice and disrupts the transendothelial passage of leukocytes in vitro.

View Article and Find Full Text PDF

Background: With more than 160 000 confirmed COVID-19 cases and about 30 000 deceased people at the end of June 2020, France was one of the countries most affected by the coronavirus crisis worldwide. We aim to assess the efficiency of global lockdown policy in limiting spatial contamination through an in-depth reanalysis of spatial statistics in France during the first lockdown and immediate post-lockdown phases.

Methods: To reach that goal, we use an integrated approach at the crossroads of geography, spatial epidemiology, and public health science.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed a new method called Alpha Centauri to monitor immune responses during viral infections, making it easier to test various immune-boosting compounds.
  • * They discovered that a drug called Gilteritinib boosts innate immune responses against SARS-CoV-2 and other RNA viruses, working through a specific pathway involving AXL and IRF7.
View Article and Find Full Text PDF

Background And Aims: Numerous HCV entry factors have been identified, and yet information regarding their spatiotemporal dynamics is still limited. Specifically, one of the main entry factors of HCV is occludin (OCLN), a protein clustered at tight junctions (TJs), away from the HCV landing site. Thus, whether HCV particles slide toward TJs or, conversely, OCLN is recruited away from TJs remain debated.

View Article and Find Full Text PDF

The clinical impact of viral neuroinvasion on the central nervous system (CNS) ranges from barely detectable to deadly, including acute and chronic outcomes. Developing innovative therapeutic strategies is important to mitigate virus-induced neurological and psychiatric disorders. A key gatekeeper to the CNS is the neurovascular unit (NVU), a major obstacle to viral neuroinvasion and antiviral therapies.

View Article and Find Full Text PDF

The biosynthetic secretory pathway is particularly challenging to investigate as it is underrepresented compared to the abundance of the other intracellular trafficking routes. Here, we combined the retention using selective hook (RUSH) to a CRISPR-Cas9 gene editing approach (eRUSH) and identified Rab7-harboring vesicles as an important intermediate compartment of the Golgi-to-plasma membrane transport of neosynthesized transferrin receptor (TfR). These vesicles did not exhibit degradative properties and were not associated to Rab6A-harboring vesicles.

View Article and Find Full Text PDF

Dissemination and replication of viruses into hosts is a multistep process where viral particles infect, navigate, and indoctrinate various cell types. Viruses can reach tissues that are distant from their infection site by subverting subcellular mechanisms in ways that are, sometimes, disruptive. Modeling these steps, at appropriate resolution and within animal models, is cumbersome.

View Article and Find Full Text PDF

The evolution of the COVID-19 pandemic can be monitored through the detection of SARS-CoV-2 RNA in sewage. Here, we measured the amount of SARS-CoV-2 RNA at the inflow point of the main waste water treatment plant (WWTP) of Montpellier, France. We collected samples 4 days before the end of lockdown and up to 70 days post-lockdown.

View Article and Find Full Text PDF

Background Information: Claudin-1 (CLDN1) is a four-span transmembrane protein localised at cell-cell tight junctions (TJs), playing an important role in epithelial impermeability and tissue homoeostasis under physiological conditions. Moreover, CLDN1 expression is up-regulated in several cancers, and the level of CLDN1 expression has been proposed as a prognostic marker of patient survival.

Results: Here, we generated and characterised a novel reporter cell line expressing endogenous fluorescent levels of CLDN-1, allowing dynamic monitoring of CLDN-1 expression levels.

View Article and Find Full Text PDF

Clathrin-coated vesicles lose their clathrin lattice within seconds of pinching off, through the action of the Hsc70 "uncoating ATPase." The J- and PTEN-like domain-containing proteins, auxilin 1 (Aux1) and auxilin 2 (GAK), recruit Hsc70. The PTEN-like domain has no phosphatase activity, but it can recognize phosphatidylinositol phosphate head groups.

View Article and Find Full Text PDF

Zika virus (ZIKV) invades and persists in the central nervous system (CNS), causing severe neurological diseases. However the virus journey, from the bloodstream to tissues through a mature endothelium, remains unclear. Here, we show that ZIKV-infected monocytes represent suitable carriers for viral dissemination to the CNS using human primary monocytes, cerebral organoids derived from embryonic stem cells, organotypic mouse cerebellar slices, a xenotypic human-zebrafish model, and human fetus brain samples.

View Article and Find Full Text PDF