This research paper focuses on effective infectious municipal waste management in urban settings, highlighting a dearth of dedicated research in this domain. Unlike general or specific waste types, infectious waste poses distinct health and environmental risks. Leveraging advanced artificial intelligence techniques, we prioritize infectious waste categorization and optimization, integrating metaheuristics into optimization methods to create a robust dual-ensemble framework.
View Article and Find Full Text PDFIntroduction: This study aims to develop a web application, TB-DRD-CXR, for the categorization of tuberculosis (TB) patients into subgroups based on their level of drug resistance. The application utilizes an ensemble deep learning model that classifies TB strains into five subtypes: drug sensitive tuberculosis (DS-TB), drug resistant TB (DR-TB), multidrug-resistant TB (MDR-TB), pre-extensively drug-resistant TB (pre-XDR-TB), and extensively drug-resistant TB (XDR-TB).
Methods: The ensemble deep learning model employed in the TB-DRD-CXR web application incorporates novel fusion techniques, image segmentation, data augmentation, and various learning rate strategies.
Pharmaceuticals (Basel)
December 2022
This research develops the TB/non-TB detection and drug-resistant categorization diagnosis decision support system (TB-DRC-DSS). The model is capable of detecting both TB-negative and TB-positive samples, as well as classifying drug-resistant strains and also providing treatment recommendations. The model is developed using a deep learning ensemble model with the various CNN architectures.
View Article and Find Full Text PDFA person infected with drug-resistant tuberculosis (DR-TB) is the one who does not respond to typical TB treatment. DR-TB necessitates a longer treatment period and a more difficult treatment protocol. In addition, it can spread and infect individuals in the same manner as regular TB, despite the fact that early detection of DR-TB could reduce the cost and length of TB treatment.
View Article and Find Full Text PDF