Publications by authors named "Raoul J P Bonnal"

Article Synopsis
  • Researchers used a 5' single-cell RNA sequencing method to identify where enhancer RNAs and other RNA types start in human CD4 T cells, uncovering variations in cell types and their development.
  • By combining these RNA datasets with single-cell chromatin profiles, they found that unique active enhancers and their RNA production are specific to certain cell types and are linked to disease risk.
  • The study created a detailed atlas of these enhancers that helps to understand how genetic variations are related to various immune-mediated diseases.
View Article and Find Full Text PDF

High Grade Serous Ovarian cancer (HGSOC) is a major unmet need in oncology, due to its precocious dissemination and the lack of meaningful human models for the investigation of disease pathogenesis in a patient-specific manner. To overcome this roadblock, we present a new method to isolate and grow single cells directly from patients' metastatic ascites, establishing the conditions for propagating them as 3D cultures that we refer to as single cell-derived metastatic ovarian cancer spheroids (sMOCS). By single cell RNA sequencing (scRNAseq) we define the cellular composition of metastatic ascites and trace its propagation in 2D and 3D culture paradigms, finding that sMOCS retain and amplify key subpopulations from the original patients' samples and recapitulate features of the original metastasis that do not emerge from classical 2D culture, including retention of individual patients' specificities.

View Article and Find Full Text PDF

Interferons (IFNs) are key cytokines involved in alerting the immune system to viral infection. After IFN stimulation, cellular transcriptional profile critically changes, leading to the expression of several IFN stimulated genes (ISGs) that exert a wide variety of antiviral activities. Despite many ISGs have been already identified, a comprehensive network of coding and non-coding genes with a central role in IFN-response still needs to be elucidated.

View Article and Find Full Text PDF

Regulatory T (T) cells are a barrier for tumor immunity and a target for immunotherapy. Using single-cell transcriptomics, we found that CD4 T cells infiltrating primary and metastatic colorectal cancer and non-small-cell lung cancer are highly enriched for two subsets of comparable size and suppressor function comprising forkhead box protein P3 T and eomesodermin homolog (EOMES) type 1 regulatory T (Tr1)-like cells also expressing granzyme K and chitinase-3-like protein 2. EOMES Tr1-like cells, but not T cells, were clonally related to effector T cells and were clonally expanded in primary and metastatic tumors, which is consistent with their proliferation and differentiation in situ.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers compiled a catalog of 1116 lincRNAs and profiled nearly 100,000 single cells from the early human fetal striatum, revealing that D1 and D2 medium spiny neurons arise from a shared progenitor during the developmental phase.
  • * The findings highlight distinct gene regulatory networks for different cell types and identify human-specific lincRNAs that play a role in the unique evolution of the striatum in humans.
View Article and Find Full Text PDF

Cancer is characterized by pervasive epigenetic alterations with enhancer dysfunction orchestrating the aberrant cancer transcriptional programs and transcriptional dependencies. Here, we epigenetically characterize human colorectal cancer (CRC) using de novo chromatin state discovery on a library of different patient-derived organoids. By exploring this resource, we unveil a tumor-specific deregulated enhancerome that is cancer cell-intrinsic and independent of interpatient heterogeneity.

View Article and Find Full Text PDF

The exposure to pathogens triggers the activation of adaptive immune responses through antigens bound to surface receptors of antigen presenting cells (APCs). T cell receptors (TCR) are responsible for initiating the immune response through their physical direct interaction with antigen-bound receptors on the APCs surface. The study of T cell interactions with antigens is considered of crucial importance for the comprehension of the role of immune responses in cancer growth and for the subsequent design of immunomodulating anticancer drugs.

View Article and Find Full Text PDF

Fluorescence in situ hybridization (FISH) is a powerful single-cell technique that harnesses nucleic acid base pairing to detect the abundance and positioning of cellular RNA and DNA molecules in fixed samples. Recent technology development has paved the way to the construction of FISH probes entirely from synthetic oligonucleotides (oligos), allowing the optimization of thermodynamic properties together with the opportunity to design probes against any sequenced genome. However, comparatively little progress has been made in the development of computational tools to facilitate the oligos design, and even less has been done to extend their accessibility.

View Article and Find Full Text PDF
Article Synopsis
  • The 2015 BioHackathon brought together scientists and developers to create tools for sharing and reusing biological data.
  • They talked about problems with how to represent and use different kinds of biological information, like DNA and proteins.
  • The group shared their progress in fixing these issues and discussed future goals to improve how researchers can use biological data in their work.
View Article and Find Full Text PDF

Open-source software encourages computer programmers to reuse software components written by others. In evolutionary bioinformatics, open-source software comes in a broad range of programming languages, including C/C++, Perl, Python, Ruby, Java, and R. To avoid writing the same functionality multiple times for different languages, it is possible to share components by bridging computer languages and Bio* projects, such as BioPerl, Biopython, BioRuby, BioJava, and R/Bioconductor.

View Article and Find Full Text PDF

Tumor-infiltrating regulatory T lymphocytes (Treg) can suppress effector T cells specific for tumor antigens. Deeper molecular definitions of tumor-infiltrating-lymphocytes could thus offer therapeutic opportunities. Transcriptomes of T helper 1 (Th1), Th17, and Treg cells infiltrating colorectal or non-small-cell lung cancers were compared to transcriptomes of the same subsets from normal tissues and validated at the single-cell level.

View Article and Find Full Text PDF

Next-generation sequencing approaches, in particular RNA-seq, provide a genome-wide expression profiling allowing the identification of novel and rare transcripts such as long noncoding RNAs (lncRNA). Many RNA-seq studies have now been performed aimed at the characterization of lncRNAs and their possible involvement in cell development and differentiation in different organisms, cell types, and tissues. The adaptive immune system is an extraordinary context for the study of the role of lncRNAs in differentiation.

View Article and Find Full Text PDF

RNA-Seq is an approach to transcriptome profiling that uses deep-sequencing technologies to detect and accurately quantify RNA molecules originating from a genome at a given moment in time. In recent years, the advent of RNA-Seq has facilitated genome-wide expression profiling, including the identification of novel and rare transcripts like noncoding RNAs and novel alternative splicing isoforms.Here, we describe the analytical steps required for the identification and characterization of noncoding RNAs starting from RNA-Seq raw samples, with a particular emphasis on long noncoding RNAs (lncRNAs).

View Article and Find Full Text PDF

Background: Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples.

Description: We have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences.

View Article and Find Full Text PDF

To help better understand the role of long noncoding RNAs in the human immune system, we recently generated a comprehensive RNA-seq data set using 63 RNA samples from 13 subsets of T (CD4(+) naive, CD4(+) TH1, CD4(+) TH2, CD4(+) TH17, CD4(+) Treg, CD4(+) TCM, CD4(+) TEM, CD8(+) TCM, CD8(+) TEM, CD8(+) naive) and B (B naive, B memory, B CD5(+)) lymphocytes. There were five biological replicates for each subset except for CD8(+) TCM and B CD5(+) populations that included 4 replicates. RNA-Seq data were generated by an Illumina HiScanSQ sequencer using the TruSeq v3 Cluster kit.

View Article and Find Full Text PDF

The miRBase is the official miRNA repository which keeps the annotation updated on newly discovered miRNAs: it is also used as a reference for the design of miRNA profiling platforms. Nomenclature ambiguities generated by loosely updated platforms and design errors lead to incompatibilities among platforms, even from the same vendor. Published miRNA lists are thus generated with different profiling platforms that refer to diverse and not updated annotations.

View Article and Find Full Text PDF

Background: Computational biology comprises a wide range of technologies and approaches. Multiple technologies can be combined to create more powerful workflows if the individuals contributing the data or providing tools for its interpretation can find mutual understanding and consensus. Much conversation and joint investigation are required in order to identify and implement the best approaches.

View Article and Find Full Text PDF

CD4(+) T lymphocytes orchestrate adaptive immune responses by differentiating into various subsets of effector T cells such as T-helper 1 (Th1), Th2, Th17, and regulatory T cells. These subsets have been generally described by master transcription factors that dictate the expression of cytokines and receptors, which ultimately define lymphocyte effector functions. However, the view of T-lymphocyte subsets as stable and terminally differentiated lineages has been challenged by increasing evidence of functional plasticity within CD4(+) T-cell subsets, which implies flexible programming of effector functions depending on time and space of T-cell activation.

View Article and Find Full Text PDF

Autoimmune hepatitis (AIH) is an unresolving inflammation of the liver of unknown cause. Diagnosis requires the exclusion of other conditions and the presence of characteristic features such as specific autoantibodies. Presently, these autoantibodies have relatively low sensitivity and specificity and are identified via immunostaining of cells or tissues; therefore, there is a diagnostic need for better and easy-to-assess markers.

View Article and Find Full Text PDF

Background: The University of California, Santa Cruz (UCSC) genome database is among the most used sources of genomic annotation in human and other organisms. The database offers an excellent web-based graphical user interface (the UCSC genome browser) and several means for programmatic queries. A simple application programming interface (API) in a scripting language aimed at the biologist was however not yet available.

View Article and Find Full Text PDF

Summary: Biogem provides a software development environment for the Ruby programming language, which encourages community-based software development for bioinformatics while lowering the barrier to entry and encouraging best practices. Biogem, with its targeted modular and decentralized approach, software generator, tools and tight web integration, is an improved general model for scaling up collaborative open source software development in bioinformatics.

Availability: Biogem and modules are free and are OSS.

View Article and Find Full Text PDF

MicroRNAs are small noncoding RNAs that regulate gene expression post-transcriptionally. Here we applied microRNA profiling to 17 human lymphocyte subsets to identify microRNA signatures that were distinct among various subsets and different from those of mouse lymphocytes. One of the signature microRNAs of naive CD4+ T cells, miR-125b, regulated the expression of genes encoding molecules involved in T cell differentiation, including IFNG, IL2RB, IL10RA and PRDM1.

View Article and Find Full Text PDF

Background: Streptococcus pneumoniae is an important human pathogen representing a major cause of morbidity and mortality worldwide. We sequenced the genome of a serotype 11A, ST62 S. pneumoniae invasive isolate (AP200), that was erythromycin-resistant due to the presence of the erm(TR) determinant, and carried out analysis of the genome organization and comparison with other pneumococcal genomes.

View Article and Find Full Text PDF

The X-linked dystrophin gene is well known for its involvement in Duchenne/Becker muscular dystrophies and for its exceptional megabase size. This locus at Xp21 is prone to frequent random molecular changes, including large deletions and duplications, but also smaller variations. To cope with such huge sequence analysis requirements in forthcoming diagnostic applications, we employed the power of the parallel 454 GS-FLX pyrosequencer to the dystrophin locus.

View Article and Find Full Text PDF