To reduce particulate matter (PM) emissions from vehicles powered by gasoline direct injection (GDI) engines, increasing the fuel injection pressure has been one promising approach. However, a comparison of macroscopic characteristics between gasoline and ethanol from a GDI injector under an ultrahigh injection pressure of more than 50 MPa has not been reported. The experimental study presented in this paper can provide some new and valuable information about comparing and analyzing the macroscopic characteristics of gasoline and ethanol spray from a GDI injector in both front and side views under injection pressures of 10 and 60 MPa.
View Article and Find Full Text PDFNowadays, to mitigate the global warming problem, the requirement of carbon neutrality has become more urgent. Oxy-fuel combustion (OFC) has been proposed as a promising way of carbon capture and storage (CCS) to eliminate carbon dioxide (CO) emissions. This article explores the implementation of OFC technology in a practical gasoline direct injection (GDI) engine fueled with gasoline-ethanol blends, including E0 (gasoline), E25 (25% ethanol, 75% is gasoline in mass fraction), and E50 (50% ethanol, 50% is gasoline in mass fraction).
View Article and Find Full Text PDF