Publications by authors named "Raok Jeon"

Transcriptional enhanced associate domain (TEAD) transcription factors undergo auto-palmitoylation, which is critical to mediate their function and maintain stability. Targeting the palmitate binding pocket of TEAD holds considerable promise for drug discovery, and it can be characterised into three components: a conserved cysteine, a hydrophobic main pocket, and a hydrophilic side pocket. Endogenous palmitate and several known TEAD inhibitors interact with the cysteine and hydrophobic residues in the deep hydrophobic pocket.

View Article and Find Full Text PDF

Histone deacetylases (HDACs) are important epigenetic regulators of gene expression and various cellular processes, and are potential targets for anticancer therapy. In particular, HDAC8 is a promising therapeutic target for childhood neuroblastoma. To date, five HDAC inhibitors have been approved as anticancer drugs; however, all are non-selective HDAC inhibitors with various side effects.

View Article and Find Full Text PDF

A novel small molecule based on benzothiazole-piperazine has been identified as an effective multi-target-directed ligand (MTDL) against Alzheimer's disease (AD). Employing a medicinal chemistry approach, combined with molecular docking, MD simulation, and binding free energy estimation, compound 1 emerged as a potent MTDL against AD. Notably, compound 1 demonstrated efficient binding to both AChE and Aβ1-42, involving crucial molecular interactions within their active sites.

View Article and Find Full Text PDF

Inflammatory bowel diseases (IBD) are digestive tract disorders that involve chronic inflammation with frequent recurrences. This study aimed to evaluate the efficacy of two novel histone deacetylase 8 (HDAC8) inhibitors, namely, SPA3052 and SPA3074, against dextran sulfate sodium (DSS)-induced experimental colitis. Male C57BL/6N mice were subjected to two cycles of 1.

View Article and Find Full Text PDF
Article Synopsis
  • PAK4 is a kinase associated with cancer that was found to be overexpressed in liver injury scenarios, including hepatic ischaemia-reperfusion (I/R) and liver transplants.* -
  • In a study, a compound called SPA7012, a new type of PAK4 inhibitor, was shown to significantly reduce liver damage in mice experiencing I/R injury by improving biochemical and histopathological outcomes.* -
  • The beneficial effects of SPA7012 are linked to the stabilization of Nrf2, which is crucial for the body's anti-oxidative response, suggesting that PAK4 inhibitors could be promising for treating liver damage. *
View Article and Find Full Text PDF

Background And Purpose: Recently, isoflavone derivatives have been shown to have neuroprotective effects against neurological disorders. For instance, genistein attenuated the neuroinflammation and amyloid-β accumulation in Alzheimer's disease animal models, suggesting the potential for use to prevent and treat Alzheimer's disease.

Experimental Approach: Here, 50 compounds, including isoflavone derivatives, were constructed and screened for the inhibitory effects on amyloid-β fibrilization and oligomerization using the high-throughput screening formats of thioflavin T assay and multimer detection system, respectively.

View Article and Find Full Text PDF

Anti-breast cancer action of novel human carbonic anhydrase IX (hCA IX) inhibitor BSM-0004 has been investigated using and models of breast cancer. BSM-0004 was found to be a potent and selective hCA IX inhibitor with a Ki value of 96 nM. anticancer effect of BSM-0004 was analysed against MCF 7 and MDA-MA-231 cells, BSM-0004 exerted an effective cytotoxic effect under normoxic and hypoxic conditions, inducing apoptosis in MCF 7 cells.

View Article and Find Full Text PDF

Black berry () fruit is useful in curing diabetic complications; however, its role in diabetes-induced cardiomyopathy is not yet known. In this study, we investigated the regulation of gelatinase-B (MMP-9) by methanol seed extract (MSE) in diabetic cardiomyopathy using real-time PCR, RT-PCR, immunocytochemistry, gel diffusion assay, and substrate zymography. The regulatory effects of MSE on NF-B, TNF-, and IL-6 were also examined.

View Article and Find Full Text PDF

A set of isoflavononid and flavonoid analogs was prepared and evaluated for estrogen receptor α (ERα) and ERβ transactivation and anti-neuroinflammatory activities. Structure-activity relationship (SAR) study of naturally occurring phytoestrogens, their metabolites, and related isoflavone analogs revealed the importance of the C-ring of isoflavonoids for ER activity and selectivity. Docking study suggested putative binding modes of daidzein 2 and dehydroequol 8 in the active site of ERα and ERβ, and provided an understanding of the promising activity and selectivity of dehydroequol 8.

View Article and Find Full Text PDF

The global pandemic crisis, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed the lives of millions of people across the world. Development and testing of anti-SARS-CoV-2 drugs or vaccines have not turned to be realistic within the timeframe needed to combat this pandemic. Here, we report a comprehensive computational approach to identify the multi-targeted drug molecules against the SARS-CoV-2 proteins, whichare crucially involved in the viral-host interaction, replication of the virus inside the host, disease progression and transmission of coronavirus infection.

View Article and Find Full Text PDF

Cholestasis is a pathological condition involving blockage of bile flow that results in hepatotoxicity, inflammation, and fibrosis. Although recent studies have shown that histone deacetylases (HDACs) are involved in the progression of fibrosis in various organs, the role of HDAC8 on liver fibrosis has until now remained unexplored. This study presents a newly-synthesized, selective HDAC8 inhibitor SPA3014 composed of a vinyl disulfide-sulfoxide core, and evaluates its therapeutic efficacy against cholestatic liver injury and fibrosis in bile duct-ligated (BDL) mice.

View Article and Find Full Text PDF

As a member of the tyrosine protein kinase Tec (TEC) family, Bruton's tyrosine kinase (BTK) is considered a promising therapeutic target due to its crucial roles in the B cell receptor (BCR) signaling pathway. Although many types of BTK inhibitors have been reported, there is an unmet need to achieve selective BTK inhibitors to reduce side effects. To obtain BTK selectivity and efficacy, we designed a novel series of type II BTK inhibitors which can occupy the allosteric pocket induced by the DFG-out conformation and introduced an electrophilic warhead for targeting Cys481.

View Article and Find Full Text PDF

Bruton's tyrosine kinase (BTK) is an attractive target for treating patients with B cell malignancies and autoimmune diseases. Many BTK inhibitors have been identified; however, like other kinase inhibitors, they lack diversity in their core structures. Therefore, it is important to secure a novel scaffold that occupies the adenine-binding site of BTK.

View Article and Find Full Text PDF

Estrogen withdrawal in post-menopausal women leads to overactivation of osteoclasts, which contributes to the development of osteoporosis. Inflammatory cytokines are known as one of mechanisms of osteoclast activation after estrogen deficiency. SPA0355 is a thiourea derivative that has been investigated for its antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptors (PPARs) are important targets in metabolic diseases including obesity, metabolic syndrome, diabetes, and non-alcoholic fatty liver disease. Recently, they have been highlighted as attractive targets for the treatment of cardiovascular diseases and chronic myeloid leukemia. The PPAR agonist structure is consists of a polar head, a hydrophobic tail, and a linker.

View Article and Find Full Text PDF

A strong relationship between abnormal functions of Aurora kinases and tumorigenesis has been reported for decades. Consequently, Aurora kinases serve as potential targets for anticancer agents. Here, we identified aminobenzothiazole derivatives as novel inhibitors of Aurora B kinase through bioisosteric replacement of the previous inhibitors, aminobenzoxazole derivatives.

View Article and Find Full Text PDF

Colon cancer is one of the most common cancers. In this study, we isolated a lignan [(-)-(2R,3R)-1,4-O-diferuloylsecoisolariciresinol, DFS] from Alnus japonica (Betulaceae) and investigated its biological activity and mechanism of action on colon cancer. DFS reduced the viability of colon cancer cells and induced cell cycle arrest.

View Article and Find Full Text PDF

Pancreatic cancer is one of the leading causes of cancer, and it has the lowest 5-year survival rates. It is necessary to develop more potent anti-pancreatic cancer drugs to overcome the fast metastasis and resistance to surgery, radiotherapy, chemotherapy, and combinations of these. We have identified several diarylheptanoids as anti-pancreatic cancer agents from Alpinia officinarum (lesser galangal) and Alnus japonica.

View Article and Find Full Text PDF

Many aminodihydroquinoline compounds have been studied to determine their cytotoxicity to cancer cells. However, anti-cancer stem cells (CSCs) activity of aminodihydroquinoline has not been tested in spite that CSC is believed to do an important roles in chemotherapy resistance and recurrence. The CSC selective targeting activities of 10 recently synthesized 2-aminodihydroquinoline analogs were examined on CSCs and bulk culture of a glioblastoma cell line.

View Article and Find Full Text PDF

Infection with pathogens activates the endothelial cell and its sustained activation may result in impaired endothelial function. Endothelial dysfunction contributes to the pathologic angiogenesis that is characteristic of infection-induced inflammatory pathway activation. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is a protein receptor which recognizes bacterial molecules and stimulates an immune reaction in various cells; however, the underlying molecular mechanisms in the regulation of inflammation-triggered angiogenesis are not fully understood.

View Article and Find Full Text PDF

Oxidative stress exacerbates drug dependence induced by administration of opiate analgesics such as morphine-induced tolerance and physical dependence associated with the reduction in hepatic glutathione (GSH) level. Ajoene obtained from garlic (Allium sativum L.) has been reported for anti-tumorigenic, anti-oxidative and neuroprotective properties, however, little is known about its effect on morphine-induced dependence.

View Article and Find Full Text PDF

The Mis18 proteins (Mis18α, Mis18β, and M18BP1) are pivotal to the deposition of CENP-A at the centromere during cell cycle progression and are indispensable for embryonic development. Here, we show that Mis18α is critical for the proliferation of keratinocytes and stratification of the epidermis. Mice lacking Mis18α in the epidermis died shortly after birth, showing skin abnormalities like thin and translucent skin and defective skin barrier functions.

View Article and Find Full Text PDF

Multidrug resistance (MDR) caused by P-glycoprotein (P-gp) overexpression impedes successful cancer chemotherapy. In this study, we investigated the anticancer effects of SPA3015, a synthetic ajoene analog, in P-gp-overexpressing MDR cancer cells (KBV20C and MES-SA/DX5). Treatment with SPA3015 caused a dramatic decrease in the cell viabilities of both KBV20C and MES-SA/DX5 cells.

View Article and Find Full Text PDF

A novel series of benzoxazole analogs was designed and synthesized, and their inhibitory activities against Aurora kinases were evaluated. Some of the tested compounds exhibited a promising activity with respect to the inhibition of Aurora B kinase. A structure-activity relationship study indicated that linker length, regiochemistry, and halogen substitution play important roles in kinase inhibitory potency.

View Article and Find Full Text PDF

A balance between bone formation and bone resorption is critical for the maintenance of bone mass. In many pathological conditions, including chronic inflammation, uncontrolled activation of osteoclast differentiation often causes excessive bone resorption that results in osteoporosis. In this study, we identified the osteopenia phenotype of mice lacking Usp18 (also called Ubp43), which is a deISGylating enzyme and is known as a negative regulator of type I IFN signaling.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondo3mp39rdntd5sdtc407djntrfbm8b1n): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once