Publications by authors named "Rao V L Papineni"

Article Synopsis
  • * Current diagnostic methods like PET, CT, and MRS have improved early cancer detection and treatment management but face challenges such as high costs and difficulty in pinpointing deep tumors.
  • * The review highlights new technological advancements and cost-effective diagnostic tools that could improve cancer diagnosis and management, especially in low- and middle-income countries.
View Article and Find Full Text PDF

Purpose: (CR) infection coupled with blocking Notch/Wnt signaling via γ-secretase inhibitor dibenzazepine (DBZ) disrupts the gastro-intestinal (GI) barrier and induces colitis, akin to ionizing radiation (IR)-induced GI-injury. We investigated the effects of 2-deoxy-D-glucose (2-DG) to ameliorate the CR-DBZ-induced GI damage.

Materials And Methods: NIH:Swiss outbred mice were inoculated with 10CFUs of CR orally.

View Article and Find Full Text PDF

Recent technological advancements have increased the efficacy of radiotherapy, leading to effective management of cancer patients with enhanced patient survival and improved quality of life. Several important developments like multileaf collimator, integration of imaging techniques like positron emission tomography (PET) and computed tomography (CT), involvement of advanced dose calculation algorithms, and delivery techniques have increased tumor dose distribution and decreased normal tissue toxicity. Three-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT), stereotactic radiotherapy, image-guided radiotherapy (IGT), and particle therapy have facilitated the planning procedures, accurate tumor delineation, and dose estimation for effective personalized treatment.

View Article and Find Full Text PDF

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pandemic disease and is the major cause of deaths worldwide. The clinical complexities (inflammation, cytokine storm, and multi-organ dysfunction) associated with COVID-19 poses constraints to effective management of critically ill COVID-19 patients. Low dose radiation therapy (LDRT) has been evaluated as a potential therapeutic modality for COVID-19 pneumonia.

View Article and Find Full Text PDF

This article presents the results of a workshop held in Stirling, Scotland in June 2018, called to examine critically the effects of low-dose ionising radiation on the ecosphere. The meeting brought together participants from the fields of low- and high-dose radiobiology and those working in radioecology to discuss the effects that low doses of radiation have on non-human biota. In particular, the shape of the low-dose response relationship and the extent to which the effects of low-dose and chronic exposure may be predicted from high dose rate exposures were discussed.

View Article and Find Full Text PDF

The human intestinal tract harbors a complex ecosystem of commensal bacteria that play a fundamental role in the well-being of their host. There is a general consensus that diet rich in plant-based foods has many advantages in relation to the health and well-being of an individual. In adults, diets that have a high proportion of fruit and vegetables and a low consumption of meat are associated with a highly diverse microbiota and are defined by a greater abundance of Prevotella compared with Bacteroides, whereas the reverse is associated with a diet that contains a low proportion of plant-based foods.

View Article and Find Full Text PDF

Precise dose delivery to malignant tissue in radiotherapy is of paramount importance for treatment efficacy while minimizing morbidity of surrounding normal tissues. Current conventional imaging techniques, such as magnetic resonance imaging (MRI) and computerized tomography (CT), are used to define the three-dimensional shape and volume of the tumor for radiation therapy. In many cases, these radiographic imaging (RI) techniques are ambiguous or provide limited information with regard to tumor margins and histopathology.

View Article and Find Full Text PDF

IgG antibodies were conjugated to Kodak X-Sight nanospheres to develop fluorescent-labeled antibodies using two different synthetic routes: one involving the DTT reduction method, and the other involving Traut's Reagent modification method. These two methods result in different conjugation efficiencies and different performances in antigen detection. Western blotting shows that the nanosphere-IgG antibody conjugates synthesized using the DTT reduction method are more immunospecific than the conjugates synthesized using Traut's Reagent modification method.

View Article and Find Full Text PDF

A radiographic system is optimized for the contrast inherent to small animals and is developed for a multi-modal imaging system devised for in-vivo studies. The range of X-ray energies utilized (generally considered "soft X-rays") enables enhanced spatial resolution and superior contrast for detailed study of the mouse anatomy and smaller specimens. Despite the difficulties presented by the complicated energy spectrum of soft X-rays, relevant system calibrations for bone measures are described in detail and applied to the mouse.

View Article and Find Full Text PDF

Apocalmodulin and Ca(2+) calmodulin bind to overlapping sites on the ryanodine receptor skeletal form, RYR1, but have opposite functional effects on channel activity. Suramin, a polysulfonated napthylurea, displaces both forms of calmodulin, leading to an inhibition of activity at low Ca(2+) and an enhancement of activity at high Ca(2+). Calmodulin binding motifs on RYR1 are also able to directly interact with the carboxy-terminal tail of the transverse tubule dihydropyridine receptor (DHPR) (Sencer, S.

View Article and Find Full Text PDF