Background: Segmentation models for clinical data experience severe performance degradation when trained on a single client from one domain and distributed to other clients from different domain. Federated Learning (FL) provides a solution by enabling multi-party collaborative learning without compromising the confidentiality of clients' private data.
Methods: In this paper, we propose a cross-domain FL method for Weakly Supervised Semantic Segmentation (FL-W3S) of white blood cells in microscopic images.
Data privacy and security is an essential challenge in medical clinical settings, where individual hospital has its own sensitive patients data. Due to recent advances in decentralized machine learning in Federated Learning (FL), each hospital has its own private data and learning models to collaborate with other trusted participating hospitals. Heterogeneous data and models among different hospitals raise major challenges in robust FL, such as gradient leakage, where participants can exploit model weights to infer data.
View Article and Find Full Text PDFSwarm Learning (SL) is a promising approach to perform the distributed and collaborative model training without any central server. However, data sensitivity is the main concern for privacy when collaborative training requires data sharing. A neural network, especially Generative Adversarial Network (GAN), is able to reproduce the original data from model parameters, i.
View Article and Find Full Text PDF