The basic biological function of glutamine synthetase (Gs) is to catalyze the conversion of ammonium and glutamate to glutamine. This synthetase also performs other biological functions. However, the roles of Gs in fungi, especially in filamentous fungi, are not fully understood.
View Article and Find Full Text PDFThe filamentous fungus Aspergillus flavus causes devastating diseases not only to cash crops but also to humans by secreting a series of secondary metabolites called aflatoxins. In the cotranslational or posttranslational process, -myristoyltransferase (Nmt) is a crucial enzyme that catalyzes the myristate group from myristoyl-coenzyme A (myristoyl-CoA) to the N terminus or internal glycine residue of a protein by forming a covalent bond. Members of the Nmt family execute a diverse range of biological functions across a broad range of fungi.
View Article and Find Full Text PDFAflatoxins are a series of highly toxic and carcinogenic secondary metabolites that are synthesized by Aspergillus species. The degradation of aflatoxin enzymes is an important regulatory mechanism which modulates mycotoxin producing. The retromer complex is responsible for the retrograde transport of specific biomolecules and the vacuolar fusion in the intracellular transport.
View Article and Find Full Text PDF