Publications by authors named "Ranveer S Matharu"

Laser beam welding of copper (Cu) using near-infrared radiation is extremely challenging due to its high thermal conductivity and large laser reflectivity. In the present study, the challenges and benefits of using spatial beam oscillation during quasi-continuous wave (QCW) pulsed laser beam welding of 0.4 mm Cu to 1 mm Cu in lap joint configuration are presented.

View Article and Find Full Text PDF

Hand-eye calibration is an important step in controlling a vision-guided robot in applications like part assembly, bin picking and inspection operations etc. Many methods for estimating hand-eye transformations have been proposed in literature with varying degrees of complexity and accuracy. However, the success of a vision-guided application is highly impacted by the accuracy the hand-eye calibration of the vision system with the robot.

View Article and Find Full Text PDF

We compare the performance of a self-mixing (SM) sensing system based on an uncooled monolithic array of 24×1 vertical-cavity surface-emitting lasers (VCSELs) in two modes of operation: single active channel and the concurrent multichannel operation. We find that the signal-to-noise ratio of individual SM sensors in a VCSEL array is markedly improved by multichannel operation, as a consequence of the increased operational temperature of the sensors. The performance improvement can be further increased by manufacturing VCSEL arrays with smaller pitch.

View Article and Find Full Text PDF

We demonstrate a method for maintaining the maximum signal-to-noise ratio (SNR) of the signal obtained from the self-mixing sensor based on a vertical-cavity surface-emitting laser (VCSEL). It was found that the locus of the maximum SNR in the current-temperature space can be well approximated by a simple analytical model related to the temperature behavior of the VCSEL threshold current. The optimum sensor performance is achieved by tuning the laser current according to the proposed model, thus enabling the sensor to operate without temperature stabilization in a wide temperature range between -20 °C and +80 °C.

View Article and Find Full Text PDF