The fluorescence of carbon quantum dots (CQDs) has been paid a lot of attention, but its photothermal performance attracts less attention since preparing CQDs with high photothermal conversion efficiency (PCE) is a big challenge. In this work, CQDs with an average size of 2.3 nm and a PCE of up to 59.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2022
As a key input variable to many global climates, land surfaces and crop models, cropping intensity (CI) accurately assesses and predicts crops' output, in view of the global decline in food production in recent years due to declining natural resources, urban expansion and declining quality of arable land. Hence, research on CI mapping can have a contribution to solve this problem. Unfortunately, existing remote sensing data for CI mapping research, including Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat images, are not adequate for obtaining CI information at higher spatial and temporal resolution.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2011
A facile route was employed to synthesize porous magnetite via reaction of FeCl(3)·6H(2)O with N(2)H(4)·H(2)O in ethylene glycol without any structure-directing agent. The resultant Fe(3)O(4) particles were characterized by transmission electron microscopy, N(2) adsorption, X-ray photoelectron spectroscopy, and thermal gravimetric analysis. It was demonstrated that the particle size varied in the range of 40-220 nm, and the pore size of particles was centered around 2 nm.
View Article and Find Full Text PDFA universal strategy was developed for the preparation of high-temperature-stable carbon nanotube (CNT) -supported metal nanocatalysts by encapsulation with a mesoporous silica coating. Specifically, we first showed the design of one novel catalyst, Pt(@)CNT/SiO(2), with a controllable mesoporous silica coating in the range 11-39 nm containing pores ≈3 nm in diameter. The hollow porous silica shell offers a physical barrier to separate Pt nanoparticles from contact with each other, and at the same time the access of reactant species to Pt was not much affected.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
February 2011
High-purity ZnO nanorods have been synthesized via a two-step route using zinc acetate as a precursor without any surfactant and additive. In this method, ZnCO3 fibers were first formed in the CO2-ethanol solution, which directed the formation of ZnO nanorods by subsequent treatment in KOH aqueous solution. The as-prepared nanorods were fully characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and Fourier transform Infrared spectroscopy.
View Article and Find Full Text PDFCe(III) oxide was synthesized under the protection of nitrogen gas, which had strong ability to reduce noble metal ions (e.g., Au, Pd ions) into metallic forms under oxygen-free conditions.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2011
Mica supported Pd nanocatalysts were prepared by a two-step approach, in which SnCl(2) was first grafted onto mica via its reaction with hydroxyl groups on mica, followed by the in situ reduction of Pd(2+) by Sn(2+) on the surface of mica. The as-prepared Pd-Sn/mica catalysts were characterized by different techniques including transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and ICP analysis. The loaded Pd particles existed in the form of Pd(0) confirmed by XPS analysis, and distributed uniformly on mica with average size about 2.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2010
Palladium-hydrotalcite catalysts were prepared by immobilizing Pd(2+) on hydrotalcite (HT) via an amino acid, arginine (Arg), followed by reduction with NaBH(4) at room temperature. The resulting composite was characterized by different techniques. X-ray photoelectron spectroscopy analysis showed that the loaded Pd on hydrotalcite mainly existed in the form of Pd(0), and distributed uniformly on the support with particle size around 4 nm, as confirmed by transmission electron microscopy examination.
View Article and Find Full Text PDFCovalent immobilization of glycidyl-group-containing ionic liquids (ILs) on organic and inorganic supports with functional surfaces was achieved, based on the fact that the glycidyl group can actively react with almost all nucleophilic, electrophilic, neutral, and free-radical species. By using polymer spheres with amino- and carboxyl-group-functionalized surfaces as organic supports and silicas (including SBA15 and silica gel) with amino groups attached as inorganic supports, the ionic liquid 1-glycidyl-butylimidazolium chloride was successfully grafted onto these polymer and silica supports, respectively, through reactions between the glycidyl group in the IL and the polar groups on the support surfaces. The resultant samples were examined by transmission electron microscopy, solid-state (13)C NMR spectroscopy, IR spectroscopy, and ion chromatography.
View Article and Find Full Text PDFMonodispersed TiO2 hybrid microspheres were prepared via the hydrolysis of titanium isopropoxide (TTIP) in ethanol solution containing p-aminophenylacetic acid (APA). The effects of the APA:TTIP molar ratio, water content, reaction time and reaction temperature on the morphology of the resultant spheres were investigated. The products were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction.
View Article and Find Full Text PDFHerein we present a novel and facile approach to controllably load ultrafine noble metal nanoparticles on titania through in situ redox reaction between the reductive titanium(III) oxide support and metal salt precursors in aqueous solution. A series of noble metal/TiO(2) nanocomposites with uniform metal dispersion, tunable metal particle size, and narrow metal particle size distribution were obtained.
View Article and Find Full Text PDF