Introduction: Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is recognized as a diagnostic and prognostic blood biomarker for traumatic brain injury (TBI). This study aimed to evaluate whether UCH-L1 concentrations measured in patients' urine post-injury could serve as a diagnostic or prognostic biomarker for outcomes in various types of acute brain injuries (ABI).
Material And Methods: This pilot study included 46 ABI patients: aneurysmal subarachnoid hemorrhage (n = 22), ischemic stroke (n = 16), and traumatic brain injury (n = 8), along with three healthy controls.
Lipidomic alterations have been associated with various neurological diseases. Examining temporal changes in serum lipidomic profiles, irrespective of injury type, reveals promising prognostic indicators. In this longitudinal prospective observational study, serum samples were collected early (46 ± 24 h) and late (142 ± 52 h) post-injury from 70 patients with ischemic stroke, aneurysmal subarachnoid hemorrhage, and traumatic brain injury that had outcomes dichotomized as favorable (modified Rankin Scores (mRS) 0-3) and unfavorable (mRS 4-6) three months post-injury.
View Article and Find Full Text PDFTransparency of Caenorhabditis elegans enables microscopic in vivo imaging of cellular processes, but immobilization is required due to high locomotor activity. Here, anesthetic-like effects of dissociate anesthetic ketamine in adult C. elegans are presented using video recordings and infrared-based automated activity tracking.
View Article and Find Full Text PDFAneurysmal subarachnoid hemorrhage (aSAH), ischemic stroke (IS), and traumatic brain injury (TBI) are severe conditions impacting individuals and society. Identifying reliable prognostic biomarkers for predicting survival or recovery remains a challenge. Soluble urokinase type plasminogen activator receptor (suPAR) has gained attention as a potential prognostic biomarker in acute sepsis.
View Article and Find Full Text PDFDepression is associated with dysregulated circadian rhythms, but the role of intrinsic clocks in mood-controlling brain regions remains poorly understood. We found increased circadian negative loop and decreased positive clock regulators expression in the medial prefrontal cortex (mPFC) of a mouse model of depression, and a subsequent clock countermodulation by the rapid antidepressant ketamine. Selective Bmal1KO in CaMK2a excitatory neurons revealed that the functional mPFC clock is an essential factor for the development of a depression-like phenotype and ketamine effects.
View Article and Find Full Text PDFBackground: Brain recovery mechanisms after injuries like aneurysmal subarachnoid hemorrhage (aSAH), ischemic stroke (IS), and traumatic brain injury (TBI) involve brain plasticity, synaptic regeneration, and neuroinflammation. We hypothesized that serum levels of the p75 neurotrophic receptor (p75NTR) and associated signaling proteins, as well as differentially expressed (DE) microRNAs, could predict recovery outcomes irrespective of injury type.
Methods: A prospective patient cohort with ischemic stroke (IS, n = 30), aneurysmal subarachnoid hemorrhage (aSAH, n = 31), and traumatic brain injury (TBI, n = 13) were evaluated (total n = 74).
Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the adult brain that binds to GABA receptors and hyperpolarizes the postsynaptic neuron. Gabazine acts as a competitive antagonist to type A GABA receptors (GABAR), thereby causing diminished neuronal hyperpolarization and GABAR-mediated inhibition. However, the biochemical effects and the potential regulatory role of astrocytes in this process remain poorly understood.
View Article and Find Full Text PDFNitrous oxide (NO; laughing gas) has recently reported to produce rapid antidepressant effects, but little is known about the underlying mechanisms. We performed transcriptomics, in situ hybridization, and electrophysiological studies to examine the potential shared signatures induced by 1 h inhalation of 50% NO and a single subanesthetic dose of ketamine (10 mg/kg, i.p.
View Article and Find Full Text PDFBackground: Sleep medicines should be prescribed cautiously, accompanied by instructions that ensure appropriate use and reduce risks. This is especially important for older adults, for whom many of these medicines are classified as potentially inappropriate medicines.
Methods: We investigated the use and appropriateness of dosing instructions for sleep medicines (described in the Finnish National Current Care Guideline for Insomnia) prescribed for older adults (≥75 years) and dispensed with instruction label in pharmacies.
Acute brain injuries (ABIs) pose a substantial global burden, demanding effective prognostic indicators for outcomes. This study explores the potential of urinary p75 neurotrophin receptor (p75NTR) concentration as a prognostic biomarker, particularly in relation to unfavorable outcomes. The study involved 46 ABI patients, comprising sub-cohorts of aneurysmal subarachnoid hemorrhage, ischemic stroke, and traumatic brain injury.
View Article and Find Full Text PDFMany mechanisms have been proposed to explain acute antidepressant drug-induced activation of TrkB neurotrophin receptors, but several questions remain. In a series of pharmacological experiments, we observed that TrkB activation induced by antidepressants and several other drugs correlated with sedation, and most importantly, coinciding hypothermia. Untargeted metabolomics of pharmacologically dissimilar TrkB activating treatments revealed effects on shared bioenergetic targets involved in adenosine triphosphate (ATP) breakdown and synthesis, demonstrating a common perturbation in metabolic activity.
View Article and Find Full Text PDFThe dissociative anesthetic ketamine regulates cortical activity in a dose-dependent manner. Subanesthetic-dose ketamine has paradoxical excitatory effects which is proposed to facilitate brain-derived neurotrophic factor (BDNF) (a ligand of tropomyosin receptor kinase B, TrkB) signaling, and activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Previous data suggests that ketamine, at sub-micromolar concentrations, induces glutamatergic activity, BDNF release, and activation of ERK1/2 also on primary cortical neurons.
View Article and Find Full Text PDFIntrathecal administration enables central nervous system delivery of drugs that do not bypass the blood-brain barrier. Systemic administration of hypertonic saline (HTS) enhances delivery of intrathecal therapeutics into the neuropil, but its effect on solute clearance from the brain remains unknown. Here, we developed a dynamic single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging platform to study the effects of HTS on whole-body distribution of the radiolabeled tracer Tc-diethylenetriaminepentaacetic acid (DTPA) administered through intracisternal, intrastriatal, or intravenous route in anesthetized rats.
View Article and Find Full Text PDFBackground: The precise mechanism governing the antidepressant effects of tianeptine is unknown. Modulation of brain glutamatergic neurotransmission has been however implicated, suggesting potential shared features with rapid-acting antidepressants targeting N-methyl-D-aspartate receptors (NMDAR). Our recent studies suggest that a single subanesthetic dose of NMDAR antagonists ketamine or nitrous oxide (NO) gradually evoke 1-4 Hz electrophysiological activity (delta-rhythm) of cerebral cortex that is accompanied by molecular signaling associated with synaptic plasticity (e.
View Article and Find Full Text PDFDepression is frequently associated with sleep problems, and clinical improvement often coincides with the normalization of sleep architecture and realignment of circadian rhythm. The effectiveness of treatments targeting sleep in depressed patients, such as sleep deprivation, further demonstrates the confluence of sleep and mood. Moreover, recent studies showing that the rapid-acting antidepressant ketamine influences processes related to sleep-wake neurobiology have led to novel hypotheses explaining rapid and sustained antidepressant effects.
View Article and Find Full Text PDFIncreased glutamatergic neurotransmission and synaptic plasticity in the prefrontal cortex have been associated with the rapid antidepressant effects of ketamine. Activation of BDNF (brain-derived neurotrophic factor) receptor TrkB is considered a key molecular event for antidepressant-induced functional and structural synaptic plasticity. Several mechanisms have been proposed to underlie ketamine's effects on TrkB, but much remains unclear.
View Article and Find Full Text PDFThe neural circuits regulating motivation and movement include midbrain dopaminergic neurons and associated inhibitory GABAergic and excitatory glutamatergic neurons in the anterior brainstem. Differentiation of specific subtypes of GABAergic and glutamatergic neurons in the mouse embryonic brainstem is controlled by a transcription factor Tal1. This study characterizes the behavioral and neurochemical changes caused by the absence of Tal1 function.
View Article and Find Full Text PDFP75 neurotrophic receptor (p75NTR) is an important receptor for the role of neurotrophins in modulating brain plasticity and apoptosis. The current understanding of the role of p75NTR in cellular adaptation following pathological insults remains blurred, which makes p75NTR's related signaling networks an interesting and challenging initial point of investigation. We identified p75NTR and related genes through extensive data mining of a PubMed literature search including published works related to p75NTR from the past 20 years.
View Article and Find Full Text PDFPost-ictal emergence of slow wave EEG (electroencephalogram) activity and burst-suppression has been associated with the therapeutic effects of the electroconvulsive therapy (ECT), indicating that mere "cerebral silence" may elicit antidepressant actions. Indeed, brief exposures to burst-suppressing anesthesia has been reported to elicit antidepressant effects in a subset of patients, and produce behavioral and molecular alterations, such as increased expression of brain-derived neurotrophic factor (BDNF), connected with antidepressant responses in rodents. Here, we have further tested the cerebral silence hypothesis by determining whether repeated exposures to isoflurane anesthesia reduce depressive-like symptoms or influence BDNF expression in male Wistar outbred rats (Crl:WI(Han)) subjected to chronic mild stress (CMS), a model which is responsive to repeated electroconvulsive shocks (ECS, a model of ECT).
View Article and Find Full Text PDFRecent studies have strived to find an association between rapid antidepressant effects and a specific subset of pharmacological targets and molecular pathways. Here, we propose a broader hypothesis of encoding, consolidation, and renormalization in depression (ENCORE-D), which suggests that, fundamentally, rapid and sustained antidepressant effects rely on intrinsic homeostatic mechanisms evoked as a response to the acute pharmacological or physiologic effects triggered by the treatment. We review evidence that supports the notion that various treatments with a rapid onset of action, such as ketamine, electroconvulsive therapy, and sleep deprivation, share the ability to acutely excite cortical networks, which increases synaptic potentiation, alters patterns of functional connectivity, and ameliorates depressive symptoms.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
June 2020
Chronic pain produces psychologic distress, which often leads to mood disorders such as depression. Co-existing chronic pain and depression pose a serious socio-economic burden and result in disability affecting millions of individuals, which urges the development of treatment strategies targeting this comorbidity. Ketamine, a noncompetitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, is shown to be efficient in treating both pain and depression-related symptoms.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
June 2020
Autoradiography (ARG) is a high-resolution imaging method for localization of radiolabeled biomarkers in ex vivo specimen. ARG using 2-deoxy-d-glucose (2-DG) method is used in to study drug actions on brain functional activity, as it provides results comparable to clinically used functional positron-emission tomography (PET). The requirement of slow analog detection methods and emerging advances in small animal PET imaging have, however, reduced the interest in ARG.
View Article and Find Full Text PDFSubanesthetic rather than anesthetic doses are thought to bring the rapid antidepressant effects of the NMDAR (N-methyl-d-aspartate receptor) antagonist ketamine. Among molecular mechanisms, activation of BDNF receptor TrkB along with the inhibition of GSK3β (glycogen synthase kinase 3β) are considered as critical molecular level determinants for ketamine's antidepressant effects. Hydroxynorketamines (2R,6R)-HNK and (2S,6S)-HNK), non-anesthetic metabolites of ketamine, have been proposed to govern the therapeutic effects of ketamine through a mechanism not involving NMDARs.
View Article and Find Full Text PDF