Background: Scaffold proteins modulate cellular signaling by facilitating assembly of specific signaling pathways. However, there is at present little information if and how scaffold proteins functionally interact with each other.
Results: Here, we show that two scaffold proteins, caveolin-1 and IQGAP1, are required for phosphorylation of the actin associated pool of extracellular signal regulated kinase 1 and 2 (ERK1/2) in response to protein kinase C activation.
Turnover of focal adhesions (FAs) is known to be critical for cell migration and adhesion of proliferative vascular smooth muscle (VSM) cells. However, it is often assumed that FAs in nonmigratory, differentiated VSM (dVSM) cells embedded in the wall of healthy blood vessels are stable structures. Recent work has demonstrated agonist-induced actin polymerization and Src-dependent FA phosphorylation in dVSM cells, suggesting that agonist-induced FA remodeling occurs.
View Article and Find Full Text PDFSrc is a known regulator of focal adhesion turnover in migrating cells; but, in contrast, Src is generally assumed to play little role in differentiated, contractile vascular smooth muscle (dVSM). The goal of the present study was to determine if Src-family kinases regulate focal adhesion proteins and how this might affect contractility of non-proliferative vascular smooth muscle. We demonstrate here, through the use of phosphotyrosine screening, deconvolution microscopy imaging, and differential centrifugation, that the activity of Src family kinases in aorta is regulated by the alpha agonist and vasoconstrictor phenylephrine, and leads to focal adhesion protein phosphorylation and remodeling in dVSM.
View Article and Find Full Text PDFMyosin phosphatase (MP) is a key regulator of myosin light chain (LC20) phosphorylation, a process essential for motility, apoptosis, and smooth muscle contractility. Although MP inhibition is well studied, little is known about MP activation. We have recently demonstrated that prostate apoptosis response (Par)-4 modulates vascular smooth muscle contractility.
View Article and Find Full Text PDF