Publications by authors named "Ransheng Wang"

Recently, a combined study of high-resolution molecular crossed beam experiment and accurate full-dimensional time-dependent theory, including full spin-orbit characteristics on the effect of electronic spin and orbital angular momenta in the F + HD reaction, was reported by some of us, focusing on the partial wave resonance phenomenon ( 936-940). It revealed that the time-dependent theory could explain all of the details observed in the high-resolution experiment. Here, we develop two time-independent close-coupling methods using hyperspherical coordinates, including the two-state model, where only a part of the spin-orbit characteristics is considered, and the six-state model, where the full spin-orbit characteristics is considered.

View Article and Find Full Text PDF

Although the reactant-product decoupling (RPD) technique was proposed over two decades ago, it remains an efficient approach for calculating product state-resolved information on some simple direct reactions using the quantum wave packet method. In the past, usually the RPD technique employed the collocation method to transform the wave function between reactant and product arrangements, which requires quite large computational efforts. In this work, the intermediate coordinate (IC) method is employed to realize the RPD technique.

View Article and Find Full Text PDF

The impact of non-Born-Oppenheimer couplings on the isotopic effects in the reaction of the Cl(P) atom with the HD ( = 0, = 0) molecule is investigated with our recently developed nonadiabatic time-independent quantum scattering methods, where the full open-shell characteristics are included in the six-state model, and also with the recently developed two-state model solving by time-independent methods, where part of the open-shell characteristic is included. The same reaction is also calculated with the simple adiabatic model using the lowest adiabatic potential energy surface. Compared with the results from different models, it is found that the reactivity of the Cl + HD → HCl + D channel is significantly overestimated in the adiabatic model.

View Article and Find Full Text PDF

The effect of electron spin-orbit interactions on chemical reaction dynamics has been a topic of much research interest. Here we report a combined experimental and theoretical study on the effect of electron spin and orbital angular momentum in the F + HD → HF + D reaction. Using a high-resolution imaging technique, we observed a peculiar horseshoe-shaped pattern in the product rotational-state-resolved differential cross sections around the forward-scattering direction.

View Article and Find Full Text PDF

Purpose: In this study, we constructed novel brain-targeting complexes (U2-AuNP) by conjugating aptamer U2 to the gold nanoparticle (AuNPs) surface as a promising option for GBM therapy.

Materials And Methods: The properties of the U2-AuNP complexes were thoroughly characterized. Then, we detected the in vitro effects of U2-AuNP in U87-EGFRvIII cell lines and the in vivo antitumor effects of U2-AuNP in GBM-bearing mice.

View Article and Find Full Text PDF