Publications by authors named "Ranran Yu"

Article Synopsis
  • The study investigates the role of liquid-liquid phase separation (LLPS) in pancreatic cancer (PC) and aims to identify biomarkers for better prognosis.
  • Through analyzing transcriptomic data and clinical information, researchers pinpointed six genes related to PC risk and formulated a risk model based on these biomarkers.
  • The developed model helps predict survival outcomes and reveals insights into immune responses, highlighting differences in immune cell levels between high-risk and low-risk PC patients.
View Article and Find Full Text PDF

Unraveling the regulatory mechanisms that govern complex traits is pivotal for advancing crop improvement. Here we present a comprehensive regulome atlas for rice (Oryza sativa), charting the chromatin accessibility across 23 distinct tissues from three representative varieties. Our study uncovers 117,176 unique open chromatin regions (OCRs), accounting for ~15% of the rice genome, a notably higher proportion compared to previous reports in plants.

View Article and Find Full Text PDF

Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors (TFs) in intricate regulatory networks in a cell-type specific manner. Here we introduced a comprehensive single-cell transcriptomic atlas of seedlings. This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets, addressing batch effects and conserving biological variance.

View Article and Find Full Text PDF

W. is a woody oil plant with high oil content and strong hypolipidemic effects, making it a valuable species for medicinal, landscaping, and ecological purposes in China. To advance genetic research on this species, we employed PacBio together with Hi-C data to create a draft genome assembly for .

View Article and Find Full Text PDF

BRD4 is a member of the BET protein family involved in chromatin remodeling and transcriptional regulation. Several BET inhibitors (BETi) have entered clinical trials, demonstrating potential in inducing cancer cell apoptosis and tumor regression. However, resistance to BETi is common in solid tumors.

View Article and Find Full Text PDF

The mortality rates of gastric cancer remain high due to limited therapeutic strategies. As a highly selective inhibitor of the BD2 domain of BET family proteins, ABBV-744 has potent chemotherapeutic activity against various human solid tumors. However, whether ABBV-744 has potential anti-tumor effects in gastric cancer remain largely unknown.

View Article and Find Full Text PDF

Low-dimensional tin selenide nanoribbons (SnSe NRs) show a wide range of applications in optoelectronics fields such as optical switches, photodetectors, and photovoltaic devices due to the suitable band gap, strong light-matter interaction, and high carrier mobility. However, it is still challenging to grow high-quality SnSe NRs for high-performance photodetectors so far. In this work, we successfully synthesized high-quality p-type SnSe NRs by chemical vapor deposition and then fabricated near-infrared photodetectors.

View Article and Find Full Text PDF

KRAS is one of the most frequently activated oncogenes in human cancers. Although the role of KRAS mutation in tumorigenesis and tumor maintenance has been extensively studied, the relationship between KRAS and the tumor immune microenvironment is not fully understood. Here, we identified a role of KRAS in driving tumor evasion from innate immune surveillance.

View Article and Find Full Text PDF

Plant genomes encode a complex and evolutionary diverse regulatory grammar that forms the basis for most life on earth. A wealth of regulome and epigenome data have been generated in various plant species, but no common, standardized resource is available so far for biologists. Here, we present ChIP-Hub, an integrative web-based platform in the ENCODE standards that bundles >10,000 publicly available datasets reanalyzed from >40 plant species, allowing visualization and meta-analysis.

View Article and Find Full Text PDF

Pancreatic cancer (PC) is a fatal disease with poor survival and limited therapeutic strategies. In this study, we identified Hesperadin as a potent anti-cancer compound against PC, from a high-throughput screening of a commercial chemical library associated with cell death. Hesperadin induced potent growth inhibition in PC cell lines and patient-derived tumor organoids in a dose- and time-dependent manner, with IC values in the nanomolar range.

View Article and Find Full Text PDF

is a semi-mangrove species with strong tolerance to salt and waterlogging stress. However, the molecular basis and mechanisms that underlie this strong adaptability to harsh environments remain poorly understood. Here, we assembled a high-quality, chromosome-level genome of this semi-mangrove plant and analyzed its transcriptome under different stress treatments to reveal regulatory responses and mechanisms.

View Article and Find Full Text PDF

Plant genomes contain a large fraction of noncoding sequences. The discovery and annotation of conserved noncoding sequences (CNSs) in plants is an ongoing challenge. Here we report the application of comparative genomics to systematically identify CNSs in 50 well-annotated Gramineae genomes using rice (Oryza sativa) as the reference.

View Article and Find Full Text PDF

Background: Emerging evidence reveals that the initiation and development of human cancers, including colorectal cancer (CRC), are associated with the deregulation of circular RNAs (circRNAs). Our study intended to disclose the role of circ_0026416 in the malignant behaviors of CRC.

Methods: The detection for circ_0026416 expression, miR-545-3p expression, and myosin VI (MYO6) mRNA expression was performed using quantitative real-time PCR (qPCR).

View Article and Find Full Text PDF

A series of novel Ce-Cu modified VO/TiO based commercial SCR catalysts were prepared via ultrasonic-assisted impregnation method for simultaneous removal of NO and elemental mercury (Hg). Nitrogen adsorption, X-ray diffraction (XRD), temperature programmed reduction of H (H-TPR) and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. 7% Ce-1% Cu/SCR catalyst exhibited the highest NO conversion efficiency (>97%) at 200-400°C, as well as the best Hg oxidation activity (>75%) at 150-350°C among all the catalysts.

View Article and Find Full Text PDF