Publications by authors named "Ranran Chang"

Article Synopsis
  • * A new network called DASUNet has been created to improve how these methods work by combining important information more effectively and allowing for smoother training.
  • * When tested, DASUNet performed really well, achieving impressive scores of 94.32% and 90.37% on two different datasets, which means it's one of the best tools available right now for detecting changes on the land.
View Article and Find Full Text PDF

The hypoglycemic effects of two recrystallized resistant starches, A-type (ARS) and B-type (BRS), were investigated in type 2 diabetic mice. Mice were treated with low-, medium-, or high-dose ARS, high-dose BRS, or high-dose ARS combined with BRS (ABRS). After 10 weeks of continuous intervention, the medium-dose ARS group showed a significant reduction in fasting blood glucose, area under the curve of glucose, triglyceride (P < 0.

View Article and Find Full Text PDF

The effects of the structure and digestibility of konjac glucomannan (KGM)-recrystallized resistant starch complex (KRS3) on the glycemic response and short-term satiety in mice were investigated. KRS3 samples were prepared by recrystallized debranched starch (RS3) at 50 °C, and then combined with KGM. The RS3 and KRS3 samples displayed an A-type pattern and maintained peak temperature values above 110 °C.

View Article and Find Full Text PDF

In this study, resistant starch (RS) with enhanced thermal stability and excellent short-chain fatty acid production was obtained using recrystallization at 50 °C of debranched waxy maize starch followed by an acetylation strategy. RS sample obtained by debranching with a 25% high concentration of native starch combined with recrystallization at 50 °C (25DBS-50 °CP) and acetylated RS (25DBS-50 °CPA) exhibited high relative crystallinity of 69.4% and 64.

View Article and Find Full Text PDF

The structure and properties of resistant starch (RS) and its digestive products were assessed in mice. Digestion of recrystallized (group RS3, including RS3a and RS3b) and control RS (RS2, RS4, and RS5) in the stomach, duodenum, and ileum of mice was systematically analyzed along with digestive degradation of RS3. RS3a and RS3b significantly reduced the release of blood glucose.

View Article and Find Full Text PDF

Non-crystalline granular starch (NCGS) has advantages in the deep processing of starch owing to its unique structure and function. In this study, NCGS was successfully prepared at a baking temperature of 210 °C, and the morphology, structure, pasting properties, and rheological properties of the NCGS were systematically studied. Compared with native starch, NCGS showed a lower processing viscosity and rapid reduction in the peak viscosity from 3795 to 147 cP.

View Article and Find Full Text PDF

High-performance nano-based superhydrophobic coatings have attracted tremendous attention in a wide range of sectors. As a biodegradable and low-cost natural polymer, starch nanoparticles (SNPs) exhibit significant potential for use in many advanced materials. However, nano-starch based superhydrophobic coatings have not yet been reported.

View Article and Find Full Text PDF

Type III resistant starch (RS3) has high resistance to enzymatic digestibility and benefits colonic bacteria by producing short-chain fatty acids (SCFAs) fermentation. Studies have delineated RS preparation and the description of RS fractions with different types of starch, but the digestion process has received little attention. The molecular and crystalline structure changes, thermal properties, and SCFA content of RS3 obtained from debranched starch were investigated in simulated salivary, gastric, and intestinal digestion systems.

View Article and Find Full Text PDF

The development of hollow nanoparticles has attracted widespread interest due to their potential commercial applications. This work aimed to prepare a novel hollow starch nanoparticles (HSNPs) from debranched waxy corn starch (DBS) via an oil-in-water (O/W) emulsion templating method. The effects of different concentrations of DBS on the formation of HSNPs at 4 °C and 25 °C were investigated.

View Article and Find Full Text PDF

Debranching modifications of waxy corn starch with pullulanase can generate short-chain amylose or debranched starch (DBS), which is easy to recrystallize. Herein, we firstly investigated the regulation of recrystallization behaviors of DBS by studying the interactions between DBS and emulsifiers, polyphenols, and fatty acids. Sodium dodecyl sulfate at the 3.

View Article and Find Full Text PDF

Starch nanoparticles (SNPs) have become one of the most interesting nanocarriers due to their relatively easy synthesis, biocompatibility, and biodegradability. However, the practical applications of SNPs are limited, as their aggregation reduce their functionality. Here, SNPs obtained by recrystallizing debranched waxy maize starch were modified using oxygen and ammonia vacuum cold plasma (CP).

View Article and Find Full Text PDF

Zwitterionic polymers have attracted great attention due to their unique structure, which can be used for various applications, such as the improvement of nanoparticle stability, ion exchange, sewage treatment, and biomedicine. Here, zwitterionic functionalized starch nanoparticles (SNPs) were successfully prepared in two steps by carboxymethylation and quaternization. The structure of the modified SNPs was confirmed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and elemental analysis.

View Article and Find Full Text PDF

In this study, starch nanoparticles (SNPs) were fabricated via a facile and green method involving a vacuum low-temperature plasma process combined with rapid ultrasonication treatment using waxy corn starch (WCS) and potato starch (PS). Morphology, size, crystalline structure, thermal property, and stability analyses of the SNPs were systematically performed. The obtained SNPs exhibited good uniformity and almost perfect spherical and square shapes.

View Article and Find Full Text PDF

Retrogradation is inevitable during the storage of starchy products. Retrogradation behavior of starches (e.g.

View Article and Find Full Text PDF

Nisin is applied broadly in the food industry as an antimicrobial peptide. The objective of this study is to prepare nisin nanoparticles using free nisin by a facile nanoprecipitation technique and to investigate their antimicrobial activity after high-temperature processing. Transmission electron microscopic images showed that the size of extra-small nisin nanoparticles with different initial concentrations of nisin (0.

View Article and Find Full Text PDF

Nanoparticles are novel and fascinating materials for tuning the activities of enzymes. In this study, we investigated the influence of spherical and polygonal starch nanoparticles (SNPs) on α-amylase activity and revealed the reaction mechanisms by ultraviolet-visible spectrophotometry, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy. We discovered that both spherical and polygonal SNPs could inhibit the α-amylase activity, with half-inhibitory concentration values of 0.

View Article and Find Full Text PDF

Pickering emulsions were first successfully fabricated by different types and sizes of corn, tapioca, sweet potato, and waxy corn starch nanoparticles as stabilizers. Photography, optical microscopy, confocal laser scanning microscopy, and rheology measurements were used to characterize Pickering emulsions stabilized by various starch nanoparticles. The results showed that tapioca, sweet potato, and corn starch nanoparticles were appropriate for Pickering emulsion stabilization because the three nanoparticles have nearly neutral wettability (θ ∼90°).

View Article and Find Full Text PDF

To broaden the application of cellulose nanocrystals (CNCs) in the field of biopolymer nanocomposites, a systematic assessment of the viscoelastic properties of CNC suspensions in the presence of glycerol (Gly) and/or sodium chloride (NaCl) was conducted. The viscosity, storage modulus (G'), and loss modulus (G'') increased with increasing concentrations of CNCs and Gly, respectively. Dramatically, the G' and G'' values were raised and tanδ (<1) decreased with the increasing addition of NaCl, indicating that the elastic properties of CNCs in NaCl solutions continuously strengthened, thereby the gel-like response of the network was enhanced.

View Article and Find Full Text PDF

To fabricate stable sized and shaped controlled release delivery systems for salvianolic acid B (Sal B), different food gums were individually added to short-chain glucan solution to prepare starch nanoparticles (StNPs)/gum nanocomposites by self-assembly, and Sal B was embedded in situ. The results showed that size of StNPs was reduced to ca. 45nm with the addition of chitosan and rosin, which decreased by over 50% than that of StNPs without the gum.

View Article and Find Full Text PDF

Essential oils (EOs), including menthone, oregano, cinnamon, lavender, and citral, are natural products that have antimicrobial and antioxidant activities. However, extremely low water solubility, and easy degradation by heat, restrict their application. The aim of this work was to evaluate the enhancement in antioxidative and antimicrobial activities of EOs encapsulated in starch nanoparticles (SNPs) prepared by short glucan chains.

View Article and Find Full Text PDF

The objective of the current research was to investigate the effects of starch nanoparticles (SNPs) prepared from waxy maize, potato, normal corn, and tapioca starches on the activity of tyrosinase. As a main polyphenol oxidase, tyrosinase not only induces fruit and vegetable browning but also causes skin diseases by overproducing melanin. Herein, for the first time, we evaluated the inhibitory kinetics of SNPs on tyrosinase.

View Article and Find Full Text PDF