Green nanotechnology, an emerging field, offers economic and social benefits while minimizing environmental impact. Nanoparticles, pivotal in medicine, pharmaceuticals, and agriculture, are now sourced from green plants and microorganisms, overcoming limitations of chemically synthesized ones. In agriculture, these green-made nanoparticles find use in fertilizers, insecticides, pesticides, and fungicides.
View Article and Find Full Text PDFIncessant utilization of chemical fertilizers leads to the accumulation of minerals in the soil, rendering them unavailable to plants. Unaware of the mineral reserves present in the soil, farming communities employ chemical fertilizers once during each cultivation, a practice that causes elevated levels of insoluble minerals within the soil. The use of biofertilizers on the other hand, reduces the impact of chemical fertilizers through the action of microorganisms in the product, which dissolves minerals and makes them readily available for plant uptake, helping to create a sustainable environment for continuous agricultural production.
View Article and Find Full Text PDFThe synthesis of polymer-encapsulated metal nanoparticles is a growing field of area due to their long-term uses in the development of new technologies. The present study describes the synthesis of chitosan/silver nanocomposite using kaempferol for anticancer and bactericidal activity. The formation of Kf-CS/Ag nanocomposite was confirmed by the development of a brown color and UV-absorbance around 438 nm.
View Article and Find Full Text PDFThe climate of the Earth has changed throughout history. Climate change negatively impacts human rights in a wide range of ways. The study aims to find out the impact of climate change on aging health in developing countries.
View Article and Find Full Text PDFIn the treatment of bacterial contamination, the problem of multi-drug resistance is becoming an increasingly pressing concern. Nanotechnology advancements enable the preparation of metal nanoparticles that can be assembled into complex systems to control bacterial and tumor cell growth. The current work investigates the green production of chitosan functionalized silver nanoparticles (CS/Ag NPs) using and their inhibition efficacy against bacterial pathogens and lung cancer cells (A549).
View Article and Find Full Text PDFChitosan functionalization is a growing field of interest to enhance the unique characteristics of metal oxide nanoparticles. In this study, a facile synthesis method has been used to develop a gallotannin loaded chitosan/zinc oxide (CS/ZnO) nanocomposite. Initially, white color formation confirmed the formation, and physico-chemical natures of the prepared nanocomposite were examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFThe industrial discharge of dye pollutant contaminated wastewater is the major cause of water and soil pollution. Photocatalysis is a promising and green remediation technology, which has received widespread attention in the remediation of hazardous dyes from aqueous environment and convert them into harmless compounds. Herein, we report the synthesis of chitosan (CS) functionalized bismuth oxychloride/zinc oxide (BiOCl/ZnO) nanocomposite by a modified hydrothermal route.
View Article and Find Full Text PDFZinc oxide nanoparticles (ZnO NPs) have been widely used in biomedical applications due to their high biocompatibility and low toxicity to humans. The present work aimed to investigate the antibacterial effects of different concentrations of ZnO NPs on two opportunistic pathogens, and . The surface interaction between nanoparticles and bacterial cell wall, and the subsequent morphological alterations on the bacterial surface, were examined through Fourier transform infrared spectroscopy and scanning electron microscope.
View Article and Find Full Text PDFThe coloured effluents produced from different industries, such as textile, plastics, printing, cosmetics, leather and paper, are extremely toxic and a tremendous threat to the aquatic organisms and human beings. The removal of coloured dye pollutants from the aqueous environment is a great challenge and a pressing task. The growing demand for low-cost and efficient treatment approaches has given rise to alternative and eco-friendly methods, such as biodegradation and microbial remediation.
View Article and Find Full Text PDFIn this report, chitosan/zinc oxide (CS/ZnO) nanocomposite was synthesized using Sida acuta and assessed their antibacterial and photocatalytic properties. The formation of CS/ZnO nanocomposite was preliminary confirmed by colour change and UV-visible spectroscopy. The crystalline peaks related to CS and ZnO in CS/ZnO nanocomposite were demonstrated by XRD.
View Article and Find Full Text PDF