Publications by authors named "Ranjitha Singh"

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes capable of oxidizing crystalline cellulose which have large practical application in the process of refining biomass. The catalytic mechanism of LPMOs still remains debated despite several proposed reaction mechanisms. Here, we report a long-lived intermediate (t =6-8 minutes) observed in an LPMO from Thermoascus aurantiacus (TaLPMO9A).

View Article and Find Full Text PDF

Natural photosynthesis is an effective route for the clean and sustainable conversion of CO into high-energy chemicals. Inspired by the natural process, a tandem photoelectrochemical (PEC) cell with an integrated enzyme-cascade (TPIEC) system was designed, which transfers photogenerated electrons to a multienzyme cascade for the biocatalyzed reduction of CO to methanol. A hematite photoanode and a bismuth ferrite photocathode were applied to fabricate the iron oxide based tandem PEC cell for visible-light-assisted regeneration of the nicotinamide cofactor (NADH).

View Article and Find Full Text PDF

Proteins are one of the most multifaceted macromolecules in living systems. Proteins have evolved to function under physiological conditions and, therefore, are not usually tolerant of harsh experimental and environmental conditions. The growing use of proteins in industrial processes as a greener alternative to chemical catalysts often demands constant innovation to improve their performance.

View Article and Find Full Text PDF

An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.

View Article and Find Full Text PDF

Galactitol 2-dehydrogenase (GDH) belongs to the protein subfamily of short-chain dehydrogenases/reductases and can be used to produce optically pure building blocks and for the bioconversion of bioactive compounds. An NAD(+)-dependent GDH from Rhizobium leguminosarum bv. viciae 3841 (RlGDH) was cloned and overexpressed in Escherichia coli.

View Article and Find Full Text PDF

L-Xylulose is a potential starting material for therapeutics. However, its translation into clinical practice has been hampered by its inherently low bioavailability. In addition, the high cost associated with the production of L-xylulose is a major factor hindering its rapid deployment beyond the laboratory.

View Article and Find Full Text PDF

Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts.

View Article and Find Full Text PDF

The medium-chain dehydrogenase/reductase (MDR) superfamily consists of a large group of enzymes with a broad range of activities. Members of this superfamily are currently the subject of intensive investigation, but many aspects, including the zinc dependence of MDR superfamily proteins, have not yet have been adequately investigated. Using a density functional theory-based screening strategy, we have identified a strictly conserved glycine residue (Gly) in the zinc-dependent MDR superfamily.

View Article and Find Full Text PDF

Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site-directed mutagenesis of the screened residues, was used to study the molecular determinants of the cofactor specificity of ZmRDH. A homologous conserved amino acid, Ser156, in the substrate-binding pocket of the wild-type ZmRDH was identified as an important residue affecting the cofactor specificity of ZmRDH.

View Article and Find Full Text PDF

Proteins are the most multifaceted macromolecules in living systems and have various important functions, including structural, catalytic, sensory, and regulatory functions. Rational design of enzymes is a great challenge to our understanding of protein structure and physical chemistry and has numerous potential applications. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmu2bf5ajp8oibro3hgl720a93fu984sr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once