Recent human decedent model studies and compassionate xenograft use have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model.
View Article and Find Full Text PDFHarnessing CRISPR-Cas9 technology provides an unprecedented ability to modify genomic loci via DNA double-strand break (DSB) induction and repair. We analyzed nonhomologous end-joining (NHEJ) repair induced by Cas9 in budding yeast and found that the orientation of binding of Cas9 and its guide RNA (gRNA) profoundly influences the pattern of insertion/deletions (indels) at the site of cleavage. A common indel created by Cas9 is a 1-bp (+1) insertion that appears to result from Cas9 creating a 1-nt 5' overhang that is filled in by a DNA polymerase and ligated.
View Article and Find Full Text PDFTrinucleotide repeats are a source of genome instability, causing replication fork stalling, chromosome fragility, and impaired repair. Specialized helicases play an important role in unwinding DNA structures to maintain genome stability. The Srs2 helicase unwinds DNA hairpins, facilitates replication, and prevents repeat instability and fragility.
View Article and Find Full Text PDFDouble-strand DNA breaks occur upon exposure of cells to ionizing radiation and certain chemical agents or indirectly through replication fork collapse at DNA damage sites. If left unrepaired, double-strand breaks can cause genome instability and cell death, and their repair can result in loss of heterozygosity. In response to DNA damage, proteins involved in double-strand break repair by homologous recombination relocalize into discrete nuclear foci.
View Article and Find Full Text PDFRecent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) have been invoked to explain these rearrangements.
View Article and Find Full Text PDFRecombination-dependent DNA replication, often called break-induced replication (BIR), was initially invoked to explain recombination events in bacteriophage but it has recently been recognized as a fundamentally important mechanism to repair double-strand chromosome breaks in eukaryotes. This mechanism appears to be critically important in the restarting of stalled and broken replication forks and in maintaining the integrity of eroded telomeres. Although BIR helps preserve genome integrity during replication, it also promotes genome instability by the production of loss of heterozygosity and the formation of nonreciprocal translocations, as well as in the generation of complex chromosomal rearrangements.
View Article and Find Full Text PDFPlasmodium falciparum adenylosuccinate synthetase, a homodimeric enzyme, contains 10 cysteine residues per subunit. Among these, Cys250, Cys328 and Cys368 lie at the dimer interface and are not conserved across organisms. PfAdSS has a positively charged interface with the crystal structure showing additional electron density around Cys328 and Cys368.
View Article and Find Full Text PDFNucleic Acids Res
February 2012
DNA sequences that form secondary structures or bind protein complexes are known barriers to replication and potential inducers of genome instability. In order to determine which helicases facilitate DNA replication across these barriers, we analyzed fork progression through them in wild-type and mutant yeast cells, using 2-dimensional gel-electrophoretic analysis of the replication intermediates. We show that the Srs2 protein facilitates replication of hairpin-forming CGG/CCG repeats and prevents chromosome fragility at the repeat, whereas it does not affect replication of G-quadruplex forming sequences or a protein-bound repeat.
View Article and Find Full Text PDFSeveral molecular mechanisms have been proposed to explain trinucleotide repeat expansions. Here we show that in yeast srs2Delta cells, CTG repeats undergo both expansions and contractions, and they show increased chromosomal fragility. Deletion of RAD52 or RAD51 suppresses these phenotypes, suggesting that recombination triggers trinucleotide repeat instability in srs2Delta cells.
View Article and Find Full Text PDFHypoxanthine guanine phosphoribosyltransferases (HGPRTs) catalyze the conversion of 6-oxopurine bases to their respective nucleotides, the phosphoribosyl group being derived from phosphoribosyl pyrophosphate. Recombinant Plasmodium falciparum HGPRT, on purification, has negligible activity, and previous reports have shown that high activities can be achieved upon incubation of recombinant enzyme with the substrates hypoxanthine and phosphoribosyl pyrophosphate [Keough DT, Ng AL, Winzor DJ, Emmerson BT & de Jersey J (1999) Mol Biochem Parasitol98, 29-41; Sujay Subbayya IN & Balaram H (2000) Biochem Biophys Res Commun279, 433-437]. In this report, we show that activation is effected by the product, Inosine monophosphate (IMP), and not by the substrates.
View Article and Find Full Text PDFMol Biochem Parasitol
November 2004
Adenylosuccinate synthetase (AdSS) catalyses the Mg(2+) dependent formation of adenylosuccinate from IMP and aspartate, the reaction being driven by the hydrolysis of GTP to GDP. All characterized AdSS thus far exhibit a random kinetic mechanism. We present here kinetic evidence that unlike all other AdSS, Plasmodium falciparum AdSS (PfAdSS) has ordered substrate binding.
View Article and Find Full Text PDFHuman hypoxanthine guanine phosphoribosyltransferase (HGPRT) lacks the ability to phosphoribosylate xanthine, a property exhibited by HGPRTs from many parasitic protozoa. Using random mutagenesis we have obtained a mutant, F36L, of human HGPRT that phosphoribosylates xanthine. Examination of the structure indicates that F36 does not make direct contact with the purine, but long-range modulation via loop IV, a segment contacting purine at C2 position, could influence substrate specificity.
View Article and Find Full Text PDF