Publications by authors named "Ranjita Biswas"

sp. strain RBIITD was isolated from contaminated rich growth medium at 55°C in an anaerobic chamber. It primarily produces butyrate as a fermentation product from plant biomass-derived sugars.

View Article and Find Full Text PDF

Background: Metabolic engineering is a commonly used approach to develop organisms for an industrial function, but engineering aimed at improving one phenotype can negatively impact other phenotypes. This lack of robustness can prove problematic. Cellulolytic bacterium is able to rapidly ferment cellulose to ethanol and other products.

View Article and Find Full Text PDF

Clostridium thermocellum has the natural ability to convert cellulose to ethanol, making it a promising candidate for consolidated bioprocessing (CBP) of cellulosic biomass to biofuels. To further improve its CBP capabilities, a mutant strain of C. thermocellum was constructed (strain AG553; C.

View Article and Find Full Text PDF

Background: The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2, and amino acids that compete with ethanol production for carbon and electrons.

View Article and Find Full Text PDF

Large-scale production of lignocellulosic biofuel is a potential solution to sustainably meet global energy needs. One-step consolidated bioprocessing (CBP) is a potentially advantageous approach for the production of biofuels, but requires an organism capable of hydrolyzing biomass to sugars and fermenting the sugars to ethanol at commercially viable titers and yields. Clostridium thermocellum, a thermophilic anaerobe, can ferment cellulosic biomass to ethanol and organic acids, but low yield, low titer, and ethanol sensitivity remain barriers to industrial production.

View Article and Find Full Text PDF

Production of 2,3-butanediol by Bacillus subtilis takes place in late-log or stationary phase, depending on the expression of bdhA gene encoding acetoin reductase, which converts acetoin to 2,3-butanediol. The present work focuses on the development of a strain of B. subtilis for enhanced production of 2,3-butanediol in early log phase of growth cycle.

View Article and Find Full Text PDF

The production of high titer xylanase without cellulase is required for prebleaching of pulps in pulp and paper industry. The mutant IITD3A of Melanocarpus albomyces developed from the spores of the wild type organism was used in this study. The statistical optimization of the process parameters by response surface methodology revealed that the production of xylanase was most affected by changes in the pH of the production medium which contained a soluble extract of wheat straw as the sole carbon source.

View Article and Find Full Text PDF