Publications by authors named "Ranjit Bahadur"

Protein-RNA interactions play vital roles in plethora of biological processes such as regulation of gene expression, protein synthesis, mRNA processing and biogenesis. Identification of RNA-binding residues (RBRs) in proteins is essential to understand RNA-mediated protein functioning, to perform site-directed mutagenesis and to develop novel targeted drug therapies. Moreover, the extensive gap between sequence and structural data restricts the identification of binding sites in unsolved structures.

View Article and Find Full Text PDF
Article Synopsis
  • * The analysis reveals distinct AU content distributions and similar minimum folding energy indices among most ncRNA classes, with notable exceptions for pre-miRNAs and lncRNAs, which show different trends.
  • * An eight-classifier model was developed to differentiate these ncRNA classes, with support vector machines achieving the highest accuracy of about 96%, leading to the creation of a web server called NCodR for easy access to this classification tool.
View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are structurally and functionally diverse macromolecules with significant involvement in several post-transcriptional gene regulatory processes and human diseases. RNA recognition motif (RRM) is one of the most abundant RNA-binding domains in human RBPs. The unique modular architecture of each RBP containing RRM is crucial for its diverse target recognition and function.

View Article and Find Full Text PDF

RNA-protein interactions play vital roles in driving the cellular machineries. Despite significant involvement in several biological processes, the underlying molecular mechanism of RNA-protein interactions is still elusive. This may be due to the experimental difficulties in solving co-crystallized RNA-protein complexes.

View Article and Find Full Text PDF

Human antigen R (HuR) is a key regulatory protein with prominent roles in RNA metabolism and post-transcriptional gene regulation. Many studies have shown the involvement of HuR in plethora of human diseases, which are often manifestations of impaired HuR-RNA interactions. However, the inherent complexities of highly flexible protein-RNA interactions have limited our understanding of the structural basis of HuR-RNA recognition.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD) are progressive neurological disorders affecting motor neurons. Cellular aggregates of fused in sarcoma (FUS) protein are found in cytoplasm of ALS and FTLD patients. Nuclear localisation signal (NLS) domain of FUS binds to Karyopherin β2 (Kapβ2), which drives nuclear transport of FUS from cytoplasm.

View Article and Find Full Text PDF

Structure, function, and evolution are interdependent properties of proteins. Diversity of protein functions arising from structural variations is a potential driving force behind protein evolvability. Intrinsically disordered proteins or regions (IDPs or IDRs) lack well-defined structure under normal physiological conditions, yet, they are highly functional.

View Article and Find Full Text PDF

We have predicted miRNAs, their targets and lncRNAs from the genome of Brassica oleracea along with their functional annotation. Selected miRNAs and their targets are experimentally validated. Roles of these non-coding RNAs in post-transcriptional gene regulation are also deciphered.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobe degeneration (FTLD) are two inter-related intractable diseases of motor neuron degeneration. Fused in sarcoma (FUS) is found in cytoplasmic accumulation of ALS and FTLD patients, which readily link the protein with the diseases. The RNA recognition motif (RRM) of FUS has the canonical α-β folds along with an unusual lysine-rich loop (KK-loop) between α1 and β2.

View Article and Find Full Text PDF

DSS1 is an evolutionary conserved, small intrinsically disordered protein that regulates various cellular functions. Although several studies have elucidated the role of DSS1 in stabilizing BRCA2 and its importance in homologous recombination repair (HRR), yet the structural mechanism behind the stability and HRR remains elusive. In this study, using molecular dynamics simulation we show that DSS1 stabilizes linearly arranged DNA/DSS1 binding domains of BRCA2 with many native contacts.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs) are crucial players in various cellular activities. Several experimental and computational analyses have been conducted to study structural pliability and functional potential of IDPs. In spite of active research in past few decades, what induces structural disorder in IDPs and how is still elusive.

View Article and Find Full Text PDF

Ribosomes are the translational machineries having two unequal subunits, small subunit (SSU) and large subunit (LSU) across all the domains of life. Origin and evolution of ribosome are encoded in its structure, and the core of the ribosome is highly conserved. Here, we have used Shannon entropy to analyze the evolution of ribosomal proteins (r-proteins) across the three domains of life.

View Article and Find Full Text PDF

Protein-RNA recognition is highly affinity-driven and regulates a wide array of cellular functions. In this study, we have curated a binding affinity data set of 40 protein-RNA complexes, for which at least one unbound partner is available in the docking benchmark. The data set covers a wide affinity range of eight orders of magnitude as well as four different structural classes.

View Article and Find Full Text PDF

Interactions between macromolecules play a crucial role in ribosome assembly that follows a highly coordinated process involving RNA folding and binding of ribosomal proteins (r-proteins). Although extensive studies have been carried out to understand macromolecular interactions in ribosomes, most of them are confined to either large or small ribosomal-subunit of few species. A comparative analysis of macromolecular interactions across different domains is still missing.

View Article and Find Full Text PDF

The 26S proteasome is a multi-catalytic ATP-dependent protease complex that recognizes and cleaves damaged or misfolded proteins to maintain cellular homeostasis. The 26S subunit consists of 20S core and 19S regulatory particles. 20S core particle consists of a stack of heptameric alpha and beta subunits.

View Article and Find Full Text PDF

Phaseolus vulgaris is an economically important legume in tropical and subtropical regions of Asia, Africa, Latin-America and parts of USA and Europe. However, its production gets severely affected by mungbean yellow mosaic India virus (MYMIV). We aim to identify and characterize differentially expressed miRNAs during MYMIV-infection in P.

View Article and Find Full Text PDF

Protein-RNA recognition often induces conformational changes in binding partners. Consequently, the solvent accessible surface area (SASA) buried in contact estimated from the co-crystal structures may differ from that calculated using their unbound forms. To evaluate the change in accessibility upon binding, we compare SASA of 126 protein-RNA complexes between bound and unbound forms.

View Article and Find Full Text PDF

We dissect the protein-protein interfaces into water preservation (WP), water hydration (WH) and water dehydration (WD) sites by comparing the water-mediated hydrogen bonds (H-bond) in the bound and unbound states of the interacting subunits. Upon subunit complexation, if a H-bond between an interface water and a protein polar group is retained, we assign it as WP site; if it is lost, we assign it as WD site and if a new H-bond is created, we assign it as WH site. We find that the density of WD sites is highest followed by WH and WP sites except in antigen and (or) antibody complexes, where the density of WH sites is highest followed by WD and WP sites.

View Article and Find Full Text PDF

Background: Non-coding RNAs (ncRNAs) are important players in the post transcriptional regulation of gene expression (PTGR). On one hand, microRNAs (miRNAs) are an abundant class of small ncRNAs (~22nt long) that negatively regulate gene expression at the levels of messenger RNAs stability and translation inhibition, on the other hand, long ncRNAs (lncRNAs) are a large and diverse class of transcribed non-protein coding RNA molecules (> 200nt) that play both up-regulatory as well as down-regulatory roles at the transcriptional level. Cajanus cajan, a leguminosae pulse crop grown in tropical and subtropical areas of the world, is a source of high value protein to vegetarians or very poor populations globally.

View Article and Find Full Text PDF

We present an updated version of the protein-RNA docking benchmark, which we first published four years back. The non-redundant protein-RNA docking benchmark version 2.0 consists of 126 test cases, a threefold increase in number compared to its previous version.

View Article and Find Full Text PDF

Protein-RNA recognition is essential for gene expression and its regulation, which is indispensable for the survival of the living organism at one hand, on the other hand, misregulation of this recognition may lead to their extinction. Polymorphic conformation of both the interacting partners is a characteristic feature of such molecular recognition that promotes the assembly. Many RNA binding proteins (RBP) or regions in them are found to be intrinsically disordered, and this property helps them to play a central role in the regulatory processes.

View Article and Find Full Text PDF

We present an algorithm 'Layers' to peel the atoms of proteins as layers. Using Layers we show an efficient way to transform protein structures into 2D pattern, named residue transition pattern (RTP), which is independent of molecular orientations. RTP explains the folding patterns of proteins and hence identification of similarity between proteins is simple and reliable using RTP than with the standard sequence or structure based methods.

View Article and Find Full Text PDF

We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) are endogenous, noncoding, short RNAs directly involved in regulating gene expression at the post-transcriptional level. In spite of immense importance, limited information of P. vulgaris miRNAs and their expression patterns prompted us to identify new miRNAs in P.

View Article and Find Full Text PDF

The repressor activator protein1 (Rap1) has been studied over the years as a multifunctional regulator in Saccharomyces cerevisiae. However, its role in storage lipid accumulation has not been investigated. This report documents the identification and isolation of a putative transcription factor CtRap1 gene from an oleaginous strain of Candida tropicalis, and establishes the direct effect of its expression on the storage lipid accumulation in S.

View Article and Find Full Text PDF