Publications by authors named "Ranjini Raghunandan"

The B(2)Π-X(2)Σ(+) electronic spectrum of C(4)H has been studied by degenerate and double resonance four-wave mixing. The technique identifies vibrational levels in the X(2)Σ(+) ground state. Its sensitivity and unique characteristics permit detection of new levels.

View Article and Find Full Text PDF

The excitation of the v(3) = 1 (σ(g)(+) C-C stretch) and the v(7) = 2 (π(g)(2) C≡C-C bend) modes in the A(2)Π(u) electronic state of diacetylene cations results in Renner-Teller (R-T) and Fermi interactions. The 3(0)(1) and 7(0)(2) vibronic bands in the A(2)Π(u)-X(2)Π(g) transition of HC(4)H(+) have been measured with rotational resolution using cavity ringdown spectroscopy in a supersonic slit jet discharge. The analysis yields T(00) = 20520.

View Article and Find Full Text PDF

Measurement of the (3)Pi-(3)Pi transition of C(6)H(+) in the gas phase near 19486 cm(-1) is reported. The experiment was carried out with a supersonic slit-jet expansion discharge using cavity ringdown absorption spectroscopy. Partly resolved P lines and observation of band heads permitted a rotational contour fit.

View Article and Find Full Text PDF

A high-resolution study of the X(2)Pi(3/2) ground state rovibronic energy levels of jet-cooled HC(2)S radical using the double-resonance two-color four-wave mixing technique (TC-RFWM) is reported. The rotational structure of the bands is observed by excitation of selected R-branch lines in the origin band of the A(2)Pi(3/2)-X(2)Pi(3/2) electronic system. The second laser frequency is scanned to transfer the population from the rotational level(s) of the upper state to selected vibronic levels of the ground state.

View Article and Find Full Text PDF

Degenerate four-wave mixing (DFWM) was used to record the spectra of charged and neutral carbon-containing radicals generated in a pulsed discharge source within a supersonic slit-jet expansion. Detection limits of approximately 10(9) molecules cm(-3) are achieved. The DFWM method allows a selective molecular detection by varying the discharge timings.

View Article and Find Full Text PDF