Publications by authors named "Ranjeet Ranjan Jha"

Multi-site MRI imaging poses a significant challenge due to the potential variations in images across different scanners at different sites. This variability can introduce ambiguity in further image analysis. Consequently, the image analysis techniques become site-dependent and scanner-dependent, implying that adjustments in the analysis methodologies are necessary for each scanner configuration.

View Article and Find Full Text PDF

Diffusion MRI (dMRI) is a non-invasive tool for assessing the white matter region of the brain by approximating the fiber streamlines, structural connectivity, and estimation of microstructure. This modality can yield useful information for diagnosing several mental diseases as well as for surgical planning. The higher angular resolution diffusion imaging (HARDI) technique is helpful in obtaining more robust fiber tracts by getting a good approximation of regions where fibers cross.

View Article and Find Full Text PDF

Background And Objective: Diffusion MRI (dMRI) has been considered one of the most popular non-invasive techniques for studying the human brain's white matter (WM). dMRI is used to delineate the brain's microstructure by approximating the WM region's fiber tracts. The achieved fiber tracts can be utilized to assess mental diseases like Multiple sclerosis, ADHD, Seizures, Intellectual disability, and others.

View Article and Find Full Text PDF

Resting-state fMRI is commonly used for diagnosing Autism Spectrum Disorder (ASD) by using network-based functional connectivity. It has been shown that ASD is associated with brain regions and their inter-connections. However, discriminating based on connectivity patterns among imaging data of the control population and that of ASD patients' brains is a non-trivial task.

View Article and Find Full Text PDF

Diffusion MRI (dMRI) is one of the most popular techniques for studying the brain structure, mainly the white matter region. Among several sampling methods in dMRI, the high angular resolution diffusion imaging (HARDI) technique has attracted researchers due to its more accurate fiber orientation estimation. However, the current single-shell HARDI makes the intravoxel structure challenging to estimate accurately.

View Article and Find Full Text PDF

Single or Multi-shell high angular resolution diffusion imaging (HARDI) has become an important dMRI acquisition technique for studying brain white matter fibers. Existing single-shell HARDI makes it challenging to estimate the intravoxel structure up to the desired resolution. However, multi-shell acquisition (with multiple b-values) can provide higher resolution for the intravoxel structure, which further helps in getting accurate fiber tracts; But, this comes at the cost of larger acquisition time and larger setup.

View Article and Find Full Text PDF

Contemporary diffusion MRI based analysis with HARDI, which provides more accurate fiber orientation, can be performed using single or multiple b-values (single or multi-shell). Single shell HARDI cannot provide volume fraction for different tissue types, which can produce bias and noisier results in estimation of fiber ODF. Multi-shell acquisition can resolve this issue.

View Article and Find Full Text PDF

Background: High throughput non-destructive phenotyping is emerging as a significant approach for phenotyping germplasm and breeding populations for the identification of superior donors, elite lines, and QTLs. Detection and counting of spikes, the grain bearing organs of wheat, is critical for phenomics of a large set of germplasm and breeding lines in controlled and field conditions. It is also required for precision agriculture where the application of nitrogen, water, and other inputs at this critical stage is necessary.

View Article and Find Full Text PDF