Hypertension is associated with poor outcome and higher mortality in patients with ischemic stroke. The impairment of adaptive vascular mechanisms under hypertensive condition compromises collateral blood flow after arterial occlusion in patients with acute ischemic stroke resulting in hypoperfusion. The increased oxidative stress caused by hypoperfusion is thought to be a trigger for the rapid evolution of ischemic infarct volume under hypertensive condition.
View Article and Find Full Text PDFHomocysteine, a sulfur-containing amino acid derived from methionine metabolism, is a known agonist of N-methyl-D-aspartate receptor (NMDAR) and is involved in neurotoxicity. Our previous findings showed that neuronal exposure to elevated homocysteine levels leads to sustained low-level increase in intracellular Ca, which is dependent on GluN2A subunit-containing NMDAR (GluN2A-NMDAR) stimulation. These studies further showed a role of ERK MAPK in homocysteine-GluN2A-NMDAR-mediated neuronal death.
View Article and Find Full Text PDFThe neuron-specific tyrosine phosphatase striatal-enriched phosphatase (STEP) is emerging as a key regulator of excitotoxicity, which is involved in the pathogenesis of both acute and chronic neurological diseases. However, the intracellular mechanisms that are regulated by STEP to confer neuroprotection against excitotoxic insults are not well understood. The present study investigates the role of STEP in regulating neuronal release of the proinflammatory prostanoid prostaglandin E (PGE), which is associated with a wide range of pathological conditions.
View Article and Find Full Text PDFThe neuron-specific tyrosine phosphatase STEP is emerging as a key neuroprotectant against acute ischemic stroke. However, it remains unclear how STEP impacts the outcome of stroke. We find that the exacerbation of ischemic brain injury in STEP deficient mice involves an early onset and sustained activation of neuronal p38 mitogen activated protein kinase, a substrate of STEP.
View Article and Find Full Text PDFHyperhomocysteinemia or systemic elevation of the amino acid homocysteine is a common metabolic disorder that is considered to be a risk factor for ischemic stroke. However, it is still unclear whether predisposition to hyperhomocysteinemia could contribute to the severity of stroke outcome. This review highlights the advantages and limitations of the current rodent models of hyperhomocysteinemia, describes the consequence of mild hyperhomocysteinemia on the severity of ischemic brain damage in preclinical studies and summarizes the mechanisms involved in homocysteine induced neurotoxicity.
View Article and Find Full Text PDFHomocysteine, a metabolite of the methionine cycle, is a known agonist of -methyl-d-aspartate receptor (NMDAR), a glutamate receptor subtype and is involved in NMDAR-mediated neurotoxicity. Our previous findings have shown that homocysteine-induced, NMDAR-mediated neurotoxicity is facilitated by a sustained increase in phosphorylation and activation of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK MAPK). In the current study, we investigated the role GluN1/GluN2A-containing functional NMDAR (GluN2A-NMDAR) and GluN1/GluN2B-containing functional NMDAR (GluN2B-NMDAR) in homocysteine-induced neurotoxicity.
View Article and Find Full Text PDFHyperhomocysteinemia or systemic elevation of homocysteine is a metabolic condition that has been linked to multiple neurological disorders where inflammation plays an important role in the progression of the disease. However, it is unclear whether hyperhomocysteinemia contributes to disease pathology by inducing an inflammatory response. The current study investigates whether exposure of primary cultures from rat and mice cortical neurons to high levels of homocysteine induces the expression and release of the proinflammatory prostanoid, Prostaglandin E2 (PGE2).
View Article and Find Full Text PDFHyperhomocysteinemia has been implicated in several neurodegenerative disorders including ischemic stroke. However, the pathological consequences of ischemic insult in individuals predisposed to hyperhomocysteinemia and the associated etiology are unknown. In this study, we evaluated the outcome of transient ischemic stroke in a rodent model of hyperhomocysteinemia, developed by subcutaneous implantation of osmotic pumps containing L-homocysteine into male Wistar rats.
View Article and Find Full Text PDFExtensive research over the last two decades has advanced our understanding of the pathophysiology of ischemic stroke. However, current pharmacologic therapies are still limited to rapid reperfusion using thrombolytic agents, and neuroprotective approaches that can reduce the consequences of ischemic and reperfusion injury, are still not available. To bridge this gap, we have evaluated the long-term efficacy and therapeutic time window of a novel peptide-based neuroprotectant TAT-STEP, derived from the brain-enriched and neuron-specific tyrosine phosphatase STEP.
View Article and Find Full Text PDFHomocysteine, a metabolite of the methionine cycle has been reported to play a role in neurotoxicity through activation of N-methyl-d-aspartate receptors (NMDAR)-mediated signaling pathway. The proposed mechanisms associated with homocysteine-NMDAR-induced neurotoxicity involve a unique signaling pathway that triggers a crosstalk between extracellular signal-regulated kinase (ERK) and p38 MAPKs, where activation of p38 MAPK is downstream of and dependent on ERK MAPK. However, the molecular basis of the ERK MAPK-mediated p38 MAPK activation is not understood.
View Article and Find Full Text PDFThe STriatal-Enriched tyrosine Phosphatase (STEP) is involved in the etiology of several age-associated neurologic disorders linked to oxidative stress and is also known to play a role in neuroprotection by modulating glutamatergic transmission. However, the possible effect of aging on STEP level and activity in the brain is still unclear. In this study, using young (1 month), adult (4 months), and aged (18 months) rats, we show that aging is associated with increase in dimerization and loss of activity of STEP.
View Article and Find Full Text PDFExcessive release of Zn(2+) in the brain is implicated in the progression of acute brain injuries. Although several signaling cascades have been reported to be involved in Zn(2+)-induced neurotoxicity, a potential contribution of tyrosine phosphatases in this process has not been well explored. Here we show that exposure to high concentrations of Zn(2+) led to a progressive increase in phosphorylation of the striatal-enriched phosphatase (STEP), a component of the excitotoxic-signaling pathway that plays a role in neuroprotection.
View Article and Find Full Text PDFThe striatal-enriched phosphatase (STEP) is a component of the NMDA-receptor-mediated excitotoxic signaling pathway, which plays a key role in ischemic brain injury. Using neuronal cultures and a rat model of ischemic stroke, we show that STEP plays an initial role in neuroprotection, during the insult, by disrupting the p38 MAPK pathway. Degradation of active STEP during reperfusion precedes ischemic brain damage and is associated with secondary activation of p38 MAPK.
View Article and Find Full Text PDFHyperhomocysteinemia is an independent risk factor for both acute and chronic neurological disorders, but little is known about the underlying mechanisms by which elevated homocysteine can promote neuronal cell death. We recently established a role for NMDA receptor-mediated activation of extracellular signal-regulated kinase (ERK)-MAPK in homocysteine-induced neuronal cell death. In this study, we examined the involvement of the stress-induced MAPK, p38 in homocysteine-induced neuronal cell death, and further explored the relationship between the two MAPKs, ERK and p38, in triggering cell death.
View Article and Find Full Text PDFSTEP (striatal-enriched phosphatase) is a non-receptor tyrosine phosphatase that is specifically expressed in the neurons of the central nervous system. STEP regulates the activity of several effector molecules involved in synaptic plasticity and neuronal cell survival, including MAPKs (mitogen-activated protein kinases), Src family kinases and NMDA (N-methyl-D-aspartic acid) receptors. The critical role of STEP in regulating these effectors requires that its activity be tightly regulated.
View Article and Find Full Text PDFThe neuron-specific tyrosine phosphatase STriatal Enriched Phosphatase (STEP) is emerging as an important mediator of glutamatergic transmission in the brain. STEP is also thought to be involved in the etiology of neurodegenerative disorders that are linked to oxidative stress such as Alzheimer's disease and cerebral ischemia. However, the mechanism by which oxidative stress can modulate STEP activity is still unclear.
View Article and Find Full Text PDFThe present study examines the role of a neuron-specific tyrosine phosphatase (STEP, striatal-enriched tyrosine phosphatase) in excitotoxic cell death. Our findings demonstrate that p38 MAPK, a stress-activated kinase that is known to play a role in the etiology of excitotoxic cell death is a substrate of STEP. Glutamate-mediated NMDA receptor stimulation leads to rapid but transient activation of p38 MAPK, which is primarily dependent on NR2A-NMDA receptor activation.
View Article and Find Full Text PDFHyperhomocysteinemia is an independent risk factor for stroke and neurological abnormalities. However, the underlying cellular mechanisms by which elevated homocysteine can promote neuronal death is not clear. In the present study we have examined the role of NMDA receptor-mediated activation of the extracellular signal-regulated kinase-mitogen-activated protein (ERK-MAP) kinase pathway in homocysteine-dependent neurotoxicity.
View Article and Find Full Text PDFThe hematopoietic system offers many advantages as a model for understanding general aspects of lineage choice and specification. Using oligonucleotide microarrays, we compared gene expression patterns of multiple purified hematopoietic cell populations, including neutrophils, monocytes, macrophages, resting, centrocytic, and centroblastic B lymphocytes, dendritic cells, and hematopoietic stem cells. Some of these cells were studied under both resting and stimulated conditions.
View Article and Find Full Text PDFNeutrophils provide an essential defense against bacterial and fungal infection and play a major role in tissue damage during inflammation. Using oligonucleotide microarrays, we have examined the time course of changes in gene expression induced by stimulation with live, opsonized Escherichia coli, soluble lipopolysaccharide, and the chemoattractant formyl-methionyl-leucyl-phenylalanine. The results indicate that activated neutrophils generate a broad and vigorous set of alterations in gene expression.
View Article and Find Full Text PDFHyperhomocysteinemia is an independent risk factor for cardiovascular disease and accelerates atherosclerosis in apoE-/- mice. Despite the observations that homocysteine causes endoplasmic reticulum (ER) stress and programmed cell death (PCD) in cultured human vascular endothelial cells, the cellular factors responsible for this effect and their relevance to atherogenesis have not been completely elucidated. We report here that homocysteine induces the expression of T-cell death-associated gene 51 (TDAG51), a member of the pleckstrin homology-related domain family, in cultured human vascular endothelial cells.
View Article and Find Full Text PDF