Heart disease is a leading cause of death globally; therefore, accurate detection and classification are prominent, and several DL and ML methods have been developed over the last decade. However, the classical approaches may be prone to overfitting and under fitting issues, and the model performance may lag due to the unavailability of annotated datasets. To overcome these issues, the research proposed a model for heart disease detection and classification by integrating blockchain technology with a Modified mixed attention-enabled search optimizer-based CNN-Bidirectional Long Short-Term Memory (M2MASC enabled CNN-BiLSTM) model.
View Article and Find Full Text PDFWith the advancements in data mining, wearables, and cloud computing, online disease diagnosis services have been widely employed in the e-healthcare environment and improved the quality of the services. The e-healthcare services help to reduce the death rate by the earlier identification of the diseases. Simultaneously, heart disease (HD) is a deadly disorder, and patient survival depends on early diagnosis of HD.
View Article and Find Full Text PDFSeveral studies aimed at improving healthcare management have shown that the importance of healthcare has grown in recent years. In the healthcare industry, effective decision-making requires multicriteria group decision-making. Simultaneously, big data analytics could be used to help with disease detection and healthcare delivery.
View Article and Find Full Text PDF