Exosomes are small extracellular vesicles (EVs) constituting fully biological, cell-derived nanovesicles with great potential in cell-to-cell communication and drug delivery applications. The current gold standard for EV labeling and tracking is represented by fluorescent lipophilic dyes which, however, importantly lack selectivity, due to their unconditional affinity for lipids. Herein, an alternative EV fluorescent labeling approach is in-depth evaluated, by taking advantage of green fluorescent protein (GFP) farnesylation (GFP-f), a post-translational modification to directly anchor GFP to the EV membrane.
View Article and Find Full Text PDFThe genomes of metazoans are organized at multiple spatial scales, ranging from the double helix of DNA to whole chromosomes. The intermediate genomic scale of kilobases to megabases, which corresponds to the 50-300 nm spatial scale, is particularly interesting, as the 3D arrangement of chromatin is implicated in multiple regulatory mechanisms. In this context, polycomb group (PcG) proteins stand as major epigenetic modulators of chromatin function, acting prevalently as repressors of gene transcription by combining chemical modifications of target histones with physical crosslinking of distal genomic regions and phase separation.
View Article and Find Full Text PDFPoly(lactide) (PLA) and poly(ethylene glycol) (PEG)-based hydrogels were prepared by mixing phosphate buffer saline (PBS, pH 7.4) solutions of four-arm (PEG-PLA)-R-(PLA-PEG) enantiomerically pure copolymers having the opposite chirality of the poly(lactide) blocks. Dynamic Light Scattering, rheology measurements, and fluorescence spectroscopy suggested that, depending on the nature of the linker R, the gelation process followed rather different mechanisms.
View Article and Find Full Text PDFIn spite of their value as genetically encodable reporters for imaging in living systems, fluorescent proteins have been used sporadically for stimulated emission depletion (STED) super-resolution imaging, owing to their moderate photophysical resistance, which does not enable reaching resolutions as high as for synthetic dyes. By a rational approach combining steady-state and ultrafast spectroscopy with gated STED imaging in living and fixed cells, we here demonstrate that F99S/M153T/V163A GFP (c3GFP) represents an efficient genetic reporter for STED, on account of no excited state absorption at depletion wavelengths <600 nm and a long emission lifetime. This makes c3GFP a valuable alternative to more common, but less photostable, EGFP and YFP/Citrine mutants for STED imaging studies targeting the green-yellow region of the optical spectrum.
View Article and Find Full Text PDFWe exploited a multi-scale microscopy imaging toolbox to address some major issues related to SARS-CoV-2 interactions with host cells. Our approach harnesses both conventional and super-resolution fluorescence microscopy and easily matches the spatial scale of single-virus/cell checkpoints. After its validation through the characterization of infected cells and virus morphology, we leveraged this toolbox to reveal subtle issues related to the entry phase of SARS-CoV-2 variants in Vero E6 cells.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer deaths. Tumor heterogeneity, which hampers development of targeted therapies, was herein deconvoluted via single cell RNA sequencing in aggressive human adenocarcinomas (carrying Kras-mutations) and comparable murine model. We identified a tumor-specific, mutant-KRAS-associated subpopulation which is conserved in both human and murine lung cancer.
View Article and Find Full Text PDFEuropium (III) luminescent chelates possess intrinsic photophysical properties that are extremely useful in a wide range of applications. The lack of examples of coumarin-based lanthanide complexes is mainly due to poor photo-sensitization attempts. However, with the appeal of using such a versatile scaffold as antenna, especially in the development of responsive molecular probes, it is worth the effort to research new structural motifs.
View Article and Find Full Text PDFThe development of lanthanide-based luminescent probes with a long emission lifetime has the potential to revolutionize imaging-based diagnostic techniques. By a rational design strategy taking advantage of computational predictions, a novel, water-soluble Eu complex from a cyclen-based ligand bearing 1,3-disubstituted benzo[h]isoquinoline arms was realized. The ligand has been obtained overcoming the lack of reactivity of position 3 of the isoquinoline moiety.
View Article and Find Full Text PDFAngiotensin-converting enzyme 2 (ACE2) is related to ACE but turned out to counteract several pathophysiological actions of ACE. ACE2 exerts antihypertensive and cardioprotective effects and reduces lung inflammation. is subjected to extensive transcriptional and post-transcriptional modulation by epigenetic mechanisms and microRNAs.
View Article and Find Full Text PDFStretch-growth has been defined as a process that extends axons via the application of mechanical forces. In the present article, we used a protocol based on magnetic nanoparticles (NPs) for labeling the entire axon tract of hippocampal neurons, and an external magnetic field gradient to generate a dragging force. We found that the application of forces below 10 pN induces growth at a rate of 0.
View Article and Find Full Text PDFIn a previous paper a thermosensitive hydrogel formulation based on chitosan or its derivatives (TSOH), containing medicated chitosan nanoparticles (Ch NP) for transcorneal administration of 5-fluorouracil (5-FU) was described. The Ch NP-containing TSOH allowed a time-constant 5-FU concentration in the aqueous for 7 h from instillation. The aim of the present work was to study the impact of the surface characteristics of new NP contained in TSOH on ocular 5-FU bioavailability.
View Article and Find Full Text PDFIntermolecular interactions impact self-assembly phenomena having a variety of bio/chemical, physical, and mechanical consequences. Nevertheless, the underlying mechanisms leading to a controlled stereo- and chemo-specific aggregation at the molecular level often remain elusive because of the intrinsically dynamic nature of these processes. Herein, we describe two 3-styryl coumarin molecular rotors capable of probing subtle intermolecular interactions controlling the self-assembly of a small-molecule organogelator.
View Article and Find Full Text PDFSeveral in vitro experiments have highlighted that the Polycomb group protein BMI1 plays a pivotal role in determining the biological functions of the Polycomb Repressor Complex 1 (PRC1), including its E3-ligase activity towards the Lys of histone H2A to yield ubiquitinated uH2A. The role of BMI1 in the epigenetic activity of PRC1 is particularly relevant in several cancers, particularly Non-Small Cell Lung Cancer (NSCLC). In this study, using indirect immunofluorescence protocols implemented on a confocal microscopy apparatus, we investigated the relationship between BMI1 and uH2A at different resolutions, in cultured (A549) and clinical NSCLC tissues, at the single cell level.
View Article and Find Full Text PDFThe plasma membrane of cells has a complex architecture based on the bidimensional liquid-crystalline bilayer arrangement of phospho- and sphingolipids, which in turn embeds several proteins and is connected to the cytoskeleton. Several studies highlight the spatial membrane organization into more ordered (L or lipid raft) and more disordered (L) domains. We here report on a fluorescent analog of the green fluorescent protein chromophore that, when conjugated to a phospholipid, enables the quantification of the L and L domains in living cells on account of its large fluorescence lifetime variation in the two phases.
View Article and Find Full Text PDFReversibly photoswitchable fluorescent proteins (RSFPs) admirably combine the genetic encoding of fluorescence with the ability to repeatedly toggle between a bright and dark state, adding a new temporal dimension to the fluorescence signal. Accordingly, in recent years RSFPs have paved the way to novel applications in cell imaging that rely on their reversible photoswitching, including many super-resolution techniques such as F-PALM, RESOLFT, and SOFI that provide nanoscale pictures of the living matter. Yet many RSFPs have been engineered by a rational approach only to a limited extent, in the absence of clear structure-property relationships that in most cases make anecdotic the emergence of the photoswitching.
View Article and Find Full Text PDFMany intracellular reactions are dependent on the dielectric ("polarity") and viscosity properties of their milieu. Fluorescence imaging offers a convenient strategy to report on such environmental properties. Yet, concomitant and independent monitoring of polarity and viscosity in cells at submicron scale is currently hampered by the lack of fluorescence probes characterized by unmixed responses to both parameters.
View Article and Find Full Text PDFRecent data indicate that nuclear lamina (NL) plays a relevant role in many fundamental cellular functions. The peculiar role of NL in cells is dramatically demonstrated by the Hutchinson-Gilford progeria syndrome (HGPS), an inherited laminopathy that causes premature, rapid aging shortly after birth. In HGPS, a mutant form of Lamin A (progeria) leads to a dysmorphic NL structure, but how this perturbation is transduced into cellular changes is still largely unknown.
View Article and Find Full Text PDFThe observation of molecular diffusion at different spatial scales, and in particular below the optical diffraction limit (<200 nm), can reveal details of the subcellular topology and its functional organization. Stimulated-emission depletion microscopy (STED) has been previously combined with fluorescence correlation spectroscopy (FCS) to investigate nanoscale diffusion (STED-FCS). However, stimulated-emission depletion fluorescence correlation spectroscopy has only been used successfully to reveal functional organization in two-dimensional space, such as the plasma membrane, while, an efficient implementation for measurements in three-dimensional space, such as the cellular interior, is still lacking.
View Article and Find Full Text PDFOxyblepharismin is the photo-oxidized form of blepharismin, the chromophore responsible for the photophobic response of heterotrich ciliate Blepharisma japonicum, and represents a nice model for the study of photo-transduction. In this work, we focused on the photophysical characterization of OxyBP, in view of highlighting the main features related to excitation and emission. By a combined experimental and computational approach we identified the main features of absorption and fluorescence emission of the molecule in solvents of different properties, identifying the nature of transitions as well as the possible heterogeneity at ground/excited state.
View Article and Find Full Text PDFA thermosensitive ophthalmic hydrogel (TSOH) - fluid at 4°C (instillation temperature), semisolid at 35°C (eye temperature), which coupled the dosing accuracy and administration ease of eyedrops with the increased ocular bioavailability of a hydrogel - was prepared by gelling a chitosan hydrochloride (ChHCl) solution (27.8 mg/mL) medicated with 1.25 mg/mL 5-fluorouracil (5-FU) with β-glycerophosphate 0.
View Article and Find Full Text PDFReversible photoswitching has been proposed as a way to identify molecules that are present in small numbers over a large, non-switching, background. This approach, called optical-lock-in-detection (OLID) requires the deterministic control of the fluorescence of a photochromic emitter through optical modulation between a bright (on) and a dark state (off). OLID yields a high-contrast map where the switching molecules are pinpointed, but the fractional intensities of the emitters are not returned.
View Article and Find Full Text PDFBy combining spectroscopic measurements under high pressure with molecular dynamics simulations and quantum mechanics calculations we investigate how sub-angstrom structural perturbations are able to tune protein function. We monitored the variations in fluorescence output of two green fluorescent protein mutants (termed Mut2 and Mut2Y, the latter containing the key T203Y mutation) subjected to pressures up to 600 MPa, at various temperatures in the 280-320 K range. By performing 150 ns molecular dynamics simulations of the protein structures at various pressures, we evidenced subtle changes in conformation and dynamics around the light-absorbing chromophore.
View Article and Find Full Text PDF