Publications by authors named "Rangaramanujam Kannan"

Article Synopsis
  • * A new glucose-dendrimer (GD2) was developed to selectively target hyperexcitable neurons, which showed promising results in various models, including lab cultures and live mice.
  • * By linking GD2 with the anti-epileptic drug valproic acid (GD2-VPA) and delivering it intranasally, researchers achieved a significant reduction in seizure severity, indicating potential for targeted neuroprotection and improved neuronal health.
View Article and Find Full Text PDF

Drug discovery is challenging task with numerous obstacles in translating drug candidates into clinical products. Dendrimers are highly adaptable nanostructured polymers with significant potential to improve the chances of clinical success for drugs. Yet, dendrimer-based drug products are still in their infancy.

View Article and Find Full Text PDF

Background: Mitchell syndrome is a rare, neurodegenerative disease caused by an ACOX1 gain-of-function mutation (c.710A>G; p.N237S), with fewer than 20 reported cases.

View Article and Find Full Text PDF

The prognosis of childhood medulloblastoma (MB) is often poor, and it usually requires aggressive therapy that adversely affects quality of life. microRNA-211 (miR-211) was previously identified as an important regulator of cells that descend from neural cells. Since medulloblastomas primarily affect cells with similar ontogeny, we investigated the role and mechanism of miR-211 in MB.

View Article and Find Full Text PDF

Wet age-related macular degeneration (AMD) is an end-stage event in a complex pathogenesis of macular degeneration, involving the abnormal growth of blood vessels at the retinal pigment epithelium driven by vascular endothelial growth factor (VEGF). Current therapies seek to interrupt VEGF signaling to halt the progress of neovascularization, but a significant patient population is not responsive. New treatment modalities such as integrin-binding peptides (risuteganib/Luminate/ALG-1001) are being explored to address this clinical need but these treatments necessitate the use of intravitreal injections (IVT), which carries risks of complications and restricts its availability in less-developed countries.

View Article and Find Full Text PDF

Rett syndrome is an X-linked neurodevelopmental disorder caused by mutation of Mecp2 gene and primarily affects females. Glial cell dysfunction has been implicated in in Rett syndrome (RTT) both in patients and in mouse models of this disorder and can affect synaptogenesis, glial metabolism and inflammation. Here we assessed whether treatment of adult (5-6 months old) symptomatic Mecp2-heterozygous female mice with N-acetyl cysteine conjugated to dendrimer (D-NAC), which is known to target glia and modulate inflammation and oxidative injury, results in improved behavioral phenotype, sleep and glial inflammatory profile.

View Article and Find Full Text PDF

The progression of Alzheimer's disease (AD) correlates with the propagation of hyperphosphorylated tau (pTau) from the entorhinal cortex to the hippocampus and neocortex. Neutral sphingomyelinase2 (nSMase2) is critical in the biosynthesis of extracellular vesicles (EVs), which play a role in pTau propagation. We recently conjugated DPTIP, a potent nSMase2 inhibitor, to hydroxyl-PAMAM-dendrimer nanoparticles that can improve brain delivery.

View Article and Find Full Text PDF

Vision impairment and loss due to posterior segment ocular disorders, including age-related macular degeneration and diabetic retinopathy, are a rapidly growing cause of disability globally. Current treatments consist primarily of intravitreal injections aimed at preventing disease progression and characterized by high cost and repeated clinic visits. Nanotechnology provides a promising platform for drug delivery to the eye, with potential to overcome anatomical and physiological barriers to provide safe, effective, and sustained treatment modalities.

View Article and Find Full Text PDF

Toxicity to hepatocytes caused by various insults including drugs is a common cause of chronic liver failure requiring transplantation. Targeting therapeutics specifically to hepatocytes is often a challenge since they are relatively nonendocytosing unlike the highly phagocytic Kupffer cells in the liver. Approaches that enable targeted intracellular delivery of therapeutics to hepatocytes have significant promise in addressing liver disorders.

View Article and Find Full Text PDF

Retinal Müller glia function as injury-induced stem-like cells in zebrafish but not mammals. However, insights gleaned from zebrafish have been applied to stimulate nascent regenerative responses in the mammalian retina. For instance, microglia/macrophages regulate Müller glia stem cell activity in the chick, zebrafish, and mouse.

View Article and Find Full Text PDF

Glutamate carboxypeptidase II (GCPII), localized on the surface of astrocytes and activated microglia, regulates extracellular glutamate concentration in the central nervous system (CNS). We have previously shown that GCPII is upregulated in activated microglia in the presence of inflammation. Inhibition of GCPII activity could reduce glutamate excitotoxicity, which may decrease inflammation and promote a 'normal' microglial phenotype.

View Article and Find Full Text PDF

We have previously shown that maternal endotoxin exposure leads to a phenotype of cerebral palsy and pro-inflammatory microglia in the brain in neonatal rabbits. "Activated" microglia overexpress the enzyme glutamate carboxypeptidase II (GCPII) that hydrolyzes N-acetylaspartylglutamate to N-acetylaspartate and glutamate, and we have shown previously that inhibiting microglial GCPII is neuroprotective. Glutamate-induced injury and associated immune signaling can alter microglial responses including microglial process movements for surveillance and phagocytosis.

View Article and Find Full Text PDF

Retinal microglial/macrophage activation and optic nerve (ON) microglial/macrophage activation are glaucoma biomarkers and potential therapeutic targets for this blinding disease. We report targeting of activated microglia by PAMAM dendrimers in a rat glaucoma model and neuroprotection by -acetylcysteine-conjugated dendrimer (D-NAC) conjugates in a post-injury rescue experiment. Intravitreally delivered fluorescently labeled dendrimer (D-Cy5) conjugates targeted and were retained in Iba-1-positive cells (90% at 7 days and 55% after 28 days) in the retina following intraocular pressure (IOP) elevation, while systemically delivered D-Cy5 targeted ON cells.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the progressive accumulation of amyloid-β and hyperphosphorylated tau (pTau), which can spread throughout the brain via extracellular vesicles (EVs). Membrane ceramide enrichment regulated by the enzyme neutral sphingomyelinase 2 (nSMase2) is a critical component of at least one EV biogenesis pathway. Our group recently identified 2,6-Dimethoxy-4-(5-Phenyl-4-Thiophen-2-yl-1H-Imidazol-2-yl)-Phenol (DPTIP), the most potent (30 nM) and selective inhibitor of nSMase2 reported to date.

View Article and Find Full Text PDF

Small interfering RNAs (siRNAs) are potent weapons for gene silencing, with an opportunity to correct defective genes and stop the production of undesirable proteins, with many applications in central nervous system (CNS) disorders. However, successful delivery of siRNAs to the brain parenchyma faces obstacles such as the blood-brain barrier (BBB), brain tissue penetration, and targeting of specific cells. In addition, siRNAs are unstable under physiological conditions and are susceptible to protein binding and enzymatic degradation, necessitating a higher dosage to remain effective.

View Article and Find Full Text PDF

X-linked adrenoleukodystrophy (ALD) is a genetic disorder that presents neurologically as either a rapid and fatal cerebral demyelinating disease in childhood (childhood cerebral adrenoleukodystrophy; ccALD) or slow degeneration of the spinal cord in adulthood (adrenomyeloneuropathy; AMN). All forms of ALD result from mutations in the ATP Binding Cassette Subfamily D Member (ABCD) 1 gene, encoding a peroxisomal transporter responsible for the import of very long chain fatty acids (VLCFA) and results mechanistically in a complex array of dysfunction, including endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, and inflammation. Few therapeutic options exist for these patients; however, an additional peroxisomal transport protein (ABCD2) has been successfully targeted previously for compensation of dysfunctional ABCD1.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD), the leading cause of blindness among the elderly, is without treatment for early disease. Degenerative retinal pigment epithelial (RPE) cell heterogeneity is a well-recognized but understudied pathogenic factor. Due to the daily phagocytosis of photoreceptor outer segments, unique photo-oxidative stress, and high metabolism for maintaining vision, the RPE has robust macroautophagy/autophagy, and mitochondrial and antioxidant networks.

View Article and Find Full Text PDF

Hyperinflammation triggered by SARS-CoV-2 is a major cause of disease severity, with activated macrophages implicated in this response. OP-101, a hydroxyl-polyamidoamine dendrimer--acetylcysteine conjugate that specifically targets activated macrophages, improves outcomes in preclinical models of systemic inflammation and neuroinflammation. In this multicenter, randomized, double-blind, placebo-controlled, adaptive phase 2a trial, we evaluated safety and preliminary efficacy of OP-101 in patients with severe COVID-19.

View Article and Find Full Text PDF

Intrauterine inflammation (IUI) is the primary cause of spontaneous preterm birth and predisposes neonates to long-term sequelae, including adverse neurological outcomes. N-acetyl-L-cysteine (NAC) is the amino acid L-cysteine derivative and a precursor to the antioxidant glutathione (GSH). NAC is commonly used clinically as an antioxidant with anti-inflammatory properties.

View Article and Find Full Text PDF

Cardiac arrest (CA), the sudden cessation of effective cardiac pumping function, is still a major clinical problem with a high rate of early and long-term mortality. Post-cardiac arrest syndrome (PCAS) may be related to an early systemic inflammatory response leading to exaggerated and sustained neuroinflammation. Therefore, early intervention with targeted drug delivery to attenuate neuroinflammation may greatly improve therapeutic outcomes.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease where muscle weakness and neuromuscular junction (NMJ) denervation precede motor neuron cell death. Although acetylcholine is the canonical neurotransmitter at the mammalian NMJ synapse, glutamate has recently been identified as a critical neurotransmitter for NMJ development and maintenance. One source of glutamate is through the catabolism of N-acetyl-aspartyl-glutamate (NAAG), which is found in mM concentrations in mammalian motoneurons, where it is released upon stimulation and hydrolyzed to glutamate by the glial enzyme glutamate carboxypeptidase II (GCPII).

View Article and Find Full Text PDF

Cognitive impairment is a common aspect of multiple sclerosis (MS) for which there are no treatments. Reduced brain -acetylaspartylglutamate (NAAG) levels are linked to impaired cognition in various neurological diseases, including MS. NAAG levels are regulated by glutamate carboxypeptidase II (GCPII), which hydrolyzes the neuropeptide to -acetyl-aspartate and glutamate.

View Article and Find Full Text PDF

Effective treatment of glioblastoma remains a daunting challenge. One of the major hurdles in the development of therapeutics is their inability to cross the blood-brain tumor barrier (BBTB). Local delivery is an alternative approach that can still suffer from toxicity in the absence of target selectivity.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults. Severe visual loss in DR is primarily due to proliferative diabetic retinopathy, characterized by pathologic preretinal angiogenesis driven by retinal ischemia. Microglia, the resident immune cells of the retina, have emerged as a potentially important regulator of pathologic retinal angiogenesis.

View Article and Find Full Text PDF

Pre-existing conditions at reproductive age, and complications arising during pregnancy can be detrimental to maternal and fetal health. Current therapies to combat obstetric disorders are limited due to the inherent complexity of pregnancy, and can have harmful effects on developing fetus. Emerging research shows intricate signaling between the cells from mother and fetus at maternal-fetal interface, providing unique opportunities for interventions specifically targeted to the mother, fetus, or placenta.

View Article and Find Full Text PDF