Here, we present the proof-of-concept of a lateral flow assay (LFA) that is capable of detecting small-molecule targets in a noncompetitive manner by deploying a sandwich-type format based on the aptamer kissing complex (AKC) strategy. A fluorescently labeled hairpin aptamer served as the signaling agent, while a specific RNA hairpin grafted onto the strip served as the capture element. The hairpin aptamer switched from an unfolded to a folded form in the presence of the target, resulting in kissing interactions between the loops of the reporter and the capture agents.
View Article and Find Full Text PDFThallium(i) and lead(ii) ions are heavy metals and extremely toxic. These metals are environmental pollutants, posing a severe risk to the environment and human health. In this study, two approaches were examined using aptamer and nanomaterial-based conjugates for thallium and lead detection.
View Article and Find Full Text PDFIn this study, a FRET-based fluorescent aptasensor for the detection of ochratoxin A (OTA) was optimized based on the quenching efficiency of single-walled carbon nanotubes (SWCNTs) and the binding affinity of aptamers. OTA aptamers were conjugated with quantum dots and adsorbed to the surface of both acid-modified and unmodified SWCNTs. The maximum fluorescence quenching efficiency of the SWCNTs were compared.
View Article and Find Full Text PDFAn aptamer-based colorimetric lateral flow assay was developed for the detection of human epidermal growth factor receptor 2 (HER2). In this study, two approaches were examined using HER2 binding aptamers and gold nanoparticles. The first method used was a solution-based adsorption-desorption colorimetric approach wherein aptamers were adsorbed onto the gold nanoparticle surface.
View Article and Find Full Text PDFRegrettably, before online publication the figure of Scheme 2 has been pasted twice as Scheme 1.
View Article and Find Full Text PDFTwo fluorescent aptasensor methods were developed for the detection of ATP in biochemical systems. The first method consisted of a label-free fluorescent "turn-on" approach using a guanine-rich ATP aptamer sequence and the DNA-binding agent berberine complex. In the presence of ATP, the ATP preferentially binds with its aptamer and conformationally changes into a G-quadruplex structure.
View Article and Find Full Text PDFNano-aptamer probes were prepared and used in lateral flow colorimetric assays for the detection of Ochratoxin A (OTA). In this study, two approaches were examined using 5'-biotin-modified OTA aptamers and silver or gold nanoparticles (AgNP or AuNP). The first method used an "adsorption-desorption" approach wherein aptamers were adsorbed onto the metal nanoparticle surface.
View Article and Find Full Text PDFWe report two label-free fluorescent aptasensor methods for the detection of S. typhimurium. In the first method, we have used a ''turn off'' approach in which the aptamer is first intercalated with SYBR Green I (SG), leading to a greatly enhanced fluorescence signal.
View Article and Find Full Text PDFAptamers, synthetic oligonucleotide-based molecular recognition probes, have found use in a wide array of biosensing technologies based on their tight and highly selective binding to a variety of molecular targets. However, the inherent challenges associated with the selection and characterization of aptamers for small molecule targets have resulted in their underrepresentation, despite the need for small molecule detection in fields such as medicine, the environment, and agriculture. This protocol describes the steps in the selection, sequencing, affinity characterization, and truncation of DNA aptamers that are specific for small molecule targets.
View Article and Find Full Text PDFOchratoxin A (OTA) is a mycotoxin produced as a secondary metabolite by several species of and and frequently found as a natural contaminant in a wide range of food commodities. Novel and robust biorecognition agents for detecting this molecule are required. Aptamers are artificial nucleic acid ligands able to bind with high affinity and specificity to a given target molecule.
View Article and Find Full Text PDFChem Commun (Camb)
October 2015
A strategy for aptamer-based biosensing termed linkage inversion assembled nano-aptasensors (LIANAs) is shown to be a generally applicable approach to the sensitive and specific detection of a target molecule in turn-on fluorescence solution-based and paper-based tests.
View Article and Find Full Text PDFNucleic acid aptamers are versatile molecular recognition agents that bind to their targets with high selectivity and affinity. The past few years have seen a dramatic increase in aptamer development and interest for diagnostic and therapeutic applications. As the applications for aptamers expand, the need for a more standardized, stringent, and informative characterization and validation methodology increases.
View Article and Find Full Text PDFNucleic acid aptamers are emerging as useful molecular recognition tools for food safety monitoring. However, practical and technical challenges limit the number and diversity of available aptamer probes that can be incorporated into novel sensing schemes. This work describes the selection of novel DNA aptamers that bind to the important food contaminant ochratoxin A (OTA).
View Article and Find Full Text PDFGold nanorod end-to-end assembly is demonstrated by the selective complexation of a bisacridinedione foldamer with Ca(2+). This setup can be applied as a chemosensor for Ca(2+) ions, as the complex shows selective red-shifting of the nanorod plasmon peak and enhancement in fluorescence from the acridinedione moieties upon exposure to Ca(2+) .
View Article and Find Full Text PDFChem Commun (Camb)
September 2012
We report photoluminescence (PL) modulation of quantum dots (QDs) by photoinduced electron transfers from acridine-1,8-dione derivative surface ligands. Reversible PL switching upon many repeated cycles was demonstrated, as alternating on and off of the UV excitation for the surface ligand has successfully resulted in the QD PL modulation.
View Article and Find Full Text PDFA multilayer of CdSe quantum dots (QDs) was prepared on the mesoporous surface of a nanoparticulate TiO(2) film by a layer-by-layer (LBL) assembly using the electrostatic interaction of the oppositely charged QD surface for application as a sensitizer in QD-sensitized TiO(2) solar cells. To maximize the absorption of incident light and the generation of excitons by CdSe QDs within a fixed thickness of TiO(2) film, the experimental conditions of QD deposition were optimized by controlling the concentration of salt added into the QD-dissolved solutions and repeating the LBL deposition a few times. A proper concentration of salt was found to be critical in providing a deep penetration of QDs into the mesopore, thus leading to a dense and uniform distribution throughout the whole TiO(2) matrix while anchoring the oppositely charged QDs alternately in a controllable way.
View Article and Find Full Text PDF