Publications by authors named "Rangan Maitra"

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing globally. MASLD is characterized by clinically significant liver steatosis, and a subset of patients progress to more severe metabolic-disorder-associated steatohepatitis (MASH) with liver inflammation and fibrosis. Cannabinoid receptor 1 (CB1) antagonism is a proven therapeutic strategy for the treatment of the phenotypes that underlie MASLD, though work on early centrally penetrant compounds largely ceased following adverse psychiatric indications in humans.

View Article and Find Full Text PDF

Partial agonists of peripheral cannabinoid receptors (CBRs) have potential therapeutic applications in several medical conditions. However, (-)-trans-Δ-tetrahydrocannabinol (THC), the principal active component of marijuana, which is a partial agonist of CB1 and CB2 penetrates the central nervous system (CNS) and produces adverse effects. Peripherally restricted partial agonists of CBRs, particularly of CB1, can be used to treat illnesses safely and effectively with a better therapeutic index.

View Article and Find Full Text PDF

Excessive alcohol consumption can result in alcoholic liver disease (ALD). There is no FDA-approved drug to specifically treat ALD and current management approaches have limited efficacy. Past studies indicate that monoacylglycerol lipase (MAGL) inhibition can have a positive impact on nonalcoholic fatty liver disease.

View Article and Find Full Text PDF

GPR88 is an orphan G protein-coupled receptor mainly expressed in the brain, whose endogenous ligand has not yet been identified. To elucidate GPR88 functions, our group has developed RTI-13951-33 () as the first active GPR88 agonist, but its poor metabolic stability and moderate brain permeability remain to be further optimized. Here, we report the design, synthesis, and pharmacological characterization of a new series of RTI-13951-33 analogues with the aim of improving pharmacokinetic properties.

View Article and Find Full Text PDF

Selective modulation of peripheral cannabinoid receptors (CBRs) has potential therapeutic applications in medical conditions, including obesity, diabetes, liver diseases, GI disorders and pain. While there have been considerable efforts to produce selective antagonists or full agonists of CBRs, there has been limited reports on the development of partial agonists. Partial agonists targeting peripheral CBRs may have desirable pharmacological profiles while not producing centrally mediated dissociative effects.

View Article and Find Full Text PDF

The apelin receptor (APJ) is a target for cardiovascular indications. Previously, we had identified a novel pyrazole-based agonist 1 ((S)-N-(1-(cyclobutylamino)-1-oxo-5-(piperidin-1-yl)pentan-3-yl)-1-cyclopentyl-5-(2,6-dimethoxyphenyl)-1H-pyrazole-3-carboxamide hydrochloride) of this GPCR. Systematic modification of 1 was performed to produce compounds with improved potency and ADME properties.

View Article and Find Full Text PDF

The orphan receptor GPR88 has been implicated in a number of striatal-associated disorders, yet its endogenous ligand has not been discovered. We have previously reported that the amine functionality in the 2-AMPP-derived GPR88 agonists can be replaced with an amide (e.g.

View Article and Find Full Text PDF

Metabolic syndrome (MetS) is a complex disorder that stems from the additive effects of multiple underlying causes such as obesity, insulin resistance, and chronic low-grade inflammation. The endocannabinoid system plays a central role in appetite regulation, energy balance, lipid metabolism, insulin sensitivity, and β-cell function. The type 1 cannabinoid receptor (CB1R) antagonist SR141716A (rimonabant) showed promising antiobesity effects, but its use was discontinued due to adverse psychiatric events in some users.

View Article and Find Full Text PDF

Human cannabinoid receptor type 1 (CBR) plays important roles in the regulation of appetite and development of addictive behaviors. Herein, we describe the design, synthesis, photocharacterization, molecular docking, and characterization of "photo-rimonabant", i.e.

View Article and Find Full Text PDF

Apelin receptor agonism improves symptoms of metabolic syndrome. However, endogenous apelin peptides have short half-lives, making their utility as potential drugs limited. Previously, we had identified a novel pyrazole-based agonist scaffold.

View Article and Find Full Text PDF
Article Synopsis
  • The apelinergic system, involving the G-protein-coupled receptor APLNR and its ligands apelin and ELABELA/TODDLER, plays a crucial role in development and maintaining physiological balance.
  • Research using Aplnr knockout mice reveals significant sensory and behavioral changes, particularly affecting fear responses in males without altering baseline anxiety levels.
  • These findings support the potential of targeting APLNR for therapeutic purposes in conditions like PTSD, especially since prior studies indicated that apelin can reduce fear and anxiety responses in rodent models.
View Article and Find Full Text PDF

Increasing evidence implicates the orphan G protein-coupled receptor 88 (GPR88) in a number of striatal-associated disorders. In this study, we report the design and synthesis of a series of novel (4-alkoxyphenyl)glycinamides (e.g.

View Article and Find Full Text PDF

The apelinergic system comprises the apelin receptor and its cognate apelin and elabela peptide ligands of various lengths. This system has become an increasingly attractive target for pulmonary and cardiometabolic diseases. Small molecule regulators of this receptor with good drug-like properties are needed.

View Article and Find Full Text PDF

We have designed and synthesized a series of 14 hybrid molecules out of the cholinesterase (ChE) inhibitor tacrine and a benzimidazole-based human cannabinoid receptor subtype 2 (hCBR) agonist and investigated them in vitro and in vivo. The compounds are potent ChE inhibitors, and for the most promising hybrids, the mechanism of human acetylcholinesterase (hAChE) inhibition as well as their ability to interfere with AChE-induced aggregation of β-amyloid (Aβ), and Aβ self-aggregation was assessed. All hybrids were evaluated for affinity and selectivity for hCBR and hCBR.

View Article and Find Full Text PDF

Peripherally restricted CB1 receptor antagonists may be useful in treating metabolic syndrome, diabetes, liver diseases, and gastrointestinal disorders. Clinical development of the centrally acting CB1 inverse agonist otenabant () was halted due to its potential of producing adverse effects. SAR studies of are reported herein with the objective of producing peripherally restricted analogues.

View Article and Find Full Text PDF

Introduction: The endocannabinoid system is an important regulator of various physiological processes. Preclinical and clinical studies indicate that attenuation of the endocannabinoid system via antagonism of the type 1 cannabinoid receptor (CB1) is an excellent strategy to treat obesity, metabolic syndrome and associated disorders. However, centrally acting antagonists of CB1 also produce adverse effects like depression and anxiety.

View Article and Find Full Text PDF

The orphan G-protein-coupled receptor GPR88 is highly expressed in the striatum. Studies using GPR88 knockout mice have suggested that the receptor is implicated in alcohol seeking and drinking behaviors. To date, the biological effects of GPR88 activation are still unknown due to the lack of a potent and selective agonist appropriate for in vivo investigation.

View Article and Find Full Text PDF

PIMSR is among the first neutral antagonists for the CB1R and was demonstrated pharmacologically to bind to the CB1R, yet not alter calcium flux. It was further shown computationally to be able to stabilize both the active and inactive states of CB1R revealing the molecular interactions that mechanistically afford the property of neutral antagonism. PIMSR shows dramatic positive effects in reducing weight, food intake, and adiposity as well as in improving glycemic control and lipid homeostasis in high-fat diet-induced obese mice, but also shows increased ALT and liver weight as markers of liver injury with chronic administration.

View Article and Find Full Text PDF

Background: GPR88 is an orphan G protein-coupled receptor highly expressed in the striatum and is implicated in basal ganglia-associated disorders. However, the receptor functions of GPR88 are still largely unknown due to the lack of potent and selective ligands appropriate for central nervous system investigation. Development of a high-throughput screening assay for GPR88 should facilitate the discovery of novel ligands to probe GPR88 functions.

View Article and Find Full Text PDF

Alleviation of neuropathic pain by cannabinoids is limited by their central nervous system (CNS) side effects. Indole and indene compounds were engineered for high hCB1R affinity, peripheral selectivity, metabolic stability, and in vivo efficacy. An epithelial cell line assay identified candidates with <1% blood-brain barrier penetration for testing in a rat neuropathy induced by unilateral sciatic nerve entrapment (SNE).

View Article and Find Full Text PDF

The apelinergic system includes a series of endogenous peptides apelin, ELABELA/TODDLER and their 7-transmembrane G-protein coupled apelin receptor (APJ, AGTRL-1, APLNR). The APJ receptor is an attractive therapeutic target because of its involvement in cardiovascular diseases and potentially other disorders including liver fibrosis, obesity, diabetes, and neuroprotection. To date, pharmacological characterization of the APJ receptor has been limited due to the lack of small molecule functional agonists or antagonists.

View Article and Find Full Text PDF