Publications by authors named "Ranga Myneni"

The fraction of absorbed photosynthetically active radiation (FPAR) is an essential biophysical parameter that characterizes the structure and function of terrestrial ecosystems. Despite the extensive utilization of several satellite-derived FPAR products, notable temporal inconsistencies within each product have been underscored. Here, the new generation of the GIMMS FPAR product, GIMMS FPAR4g, was developed using a combination of a machine learning algorithm and a pixel-wise multi-sensor records integration approach.

View Article and Find Full Text PDF

Vegetation greening has been suggested to be a dominant trend over recent decades, but severe pulses of tree mortality in forests after droughts and heatwaves have also been extensively reported. These observations raise the question of to what extent the observed severe pulses of tree mortality induced by climate could affect overall vegetation greenness across spatial grains and temporal extents. To address this issue, here we analyse three satellite-based datasets of detrended growing-season normalized difference vegetation index (NDVI) with spatial resolutions ranging from 30 m to 8 km for 1,303 field-documented sites experiencing severe drought- or heat-induced tree-mortality events around the globe.

View Article and Find Full Text PDF

Vegetation 'greenness' characterized by spectral vegetation indices (VIs) is an integrative measure of vegetation leaf abundance, biochemical properties and pigment composition. Surprisingly, satellite observations reveal that several major VIs over the US Corn Belt are higher than those over the Amazon rainforest, despite the forests having a greater leaf area. This contradicting pattern underscores the pressing need to understand the underlying drivers and their impacts to prevent misinterpretations.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the increase in foliar carbon (C) linked to global greening, analyzing data from 2000 to 2017 in the Northern Hemisphere.
  • Findings indicate that during the early green-up phase, foliar C accumulation rose due to higher photosynthesis and greater allocation of C to leaves influenced by climate change.
  • In contrast, in the later stages of green-up, both foliar C accumulation and allocation began to decline, suggesting that current biosphere models may need to better account for these varying trends.
View Article and Find Full Text PDF

The distribution of dryland trees and their density, cover, size, mass and carbon content are not well known at sub-continental to continental scales. This information is important for ecological protection, carbon accounting, climate mitigation and restoration efforts of dryland ecosystems. We assessed more than 9.

View Article and Find Full Text PDF

The seasonal dynamics of the vegetation canopy strongly regulate the surface energy balance and terrestrial carbon fluxes, providing feedbacks to climate change. Whether the seasonal timing of maximum canopy structure was optimized to achieve a maximum photosynthetic carbon uptake is still not clear due to the complex interactions between abiotic and biotic factors. We used two solar-induced chlorophyll fluorescence datasets as proxies for photosynthesis and the normalized difference vegetation index and leaf area index products derived from the moderate resolution imaging spectroradiometer as proxies for canopy structure, to characterize the connection between their seasonal peak timings from 2000 to 2018.

View Article and Find Full Text PDF

Wang . (Research Articles, 11 December 2020, p. 1295) reported a large decrease in CO fertilization effect (CFE) across the globe during the period 1982–2015 and suggested that ecosystem models underestimate the rate of CFE decline.

View Article and Find Full Text PDF
Article Synopsis
  • Ecosystems' past influences their current state, and understanding these carryover effects is crucial for predicting their future dynamics.
  • Vegetation growth carryover (VGC) significantly enhances seasonal plant growth in the Northern Hemisphere, outpacing the effects of both previous climate conditions and current environmental factors.
  • Current ecosystem models fail to accurately account for VGC, which could lead to underestimations of northern vegetation's capacity for carbon sequestration as temperatures rise in the future.
View Article and Find Full Text PDF

Assessing the seasonal patterns of the Amazon rainforests has been difficult because of the paucity of ground observations and persistent cloud cover over these forests obscuring optical remote sensing observations. Here, we use data from a new generation of geostationary satellites that carry the Advanced Baseline Imager (ABI) to study the Amazon canopy. ABI is similar to the widely used polar orbiting sensor, the Moderate Resolution Imaging Spectroradiometer (MODIS), but provides observations every 10-15 min.

View Article and Find Full Text PDF

Satellite observations show widespread increasing trends of leaf area index (LAI), known as the Earth greening. However, the biophysical impacts of this greening on land surface temperature (LST) remain unclear. Here, we quantify the biophysical impacts of Earth greening on LST from 2000 to 2014 and disentangle the contributions of different factors using a physically based attribution model.

View Article and Find Full Text PDF

Soil respiration ( ) represents the largest flux of CO from terrestrial ecosystems to the atmosphere, but its spatial and temporal changes as well as the driving forces are not well understood. We derived a product of annual global from 2000 to 2014 at 1 km by 1 km spatial resolution using remote sensing data and biome-specific statistical models. Different from the existing view that climate change dominated changes in , we showed that land-cover change played a more important role in regulating changes in temperate and boreal regions during 2000-2014.

View Article and Find Full Text PDF

Earlier vegetation greening under climate change raises evapotranspiration and thus lowers spring soil moisture, yet the extent and magnitude of this water deficit persistence into the following summer remain elusive. We provide observational evidence that increased foliage cover over the Northern Hemisphere, during 1982-2011, triggers an additional soil moisture deficit that is further carried over into summer. Climate model simulations independently support this and attribute the driving process to be larger increases in evapotranspiration than in precipitation.

View Article and Find Full Text PDF

Changes in terrestrial tropical carbon stocks have an important role in the global carbon budget. However, current observational tools do not allow accurate and large-scale monitoring of the spatial distribution and dynamics of carbon stocks. Here, we used low-frequency L-band passive microwave observations to compute a direct and spatially explicit quantification of annual aboveground carbon (AGC) fluxes and show that the tropical net AGC budget was approximately in balance during 2010 to 2017, the net budget being composed of gross losses of -2.

View Article and Find Full Text PDF

Seasonality in photosynthetic activity is a critical component of seasonal carbon, water, and energy cycles in the Earth system. This characteristic is a consequence of plant's adaptive evolutionary processes to a given set of environmental conditions. Changing climate in northern lands (>30°N) alters the state of climatic constraints on plant growth, and therefore, changes in the seasonality and carbon accumulation are anticipated.

View Article and Find Full Text PDF

The global distribution of the optimum air temperature for ecosystem-level gross primary productivity ([Formula: see text]) is poorly understood, despite its importance for ecosystem carbon uptake under future warming. We provide empirical evidence for the existence of such an optimum, using measurements of in situ eddy covariance and satellite-derived proxies, and report its global distribution. [Formula: see text] is consistently lower than the physiological optimum temperature of leaf-level photosynthetic capacity, which typically exceeds 30 °C.

View Article and Find Full Text PDF

Most Earth system models agree that land will continue to store carbon due to the physiological effects of rising CO concentration and climatic changes favoring plant growth in temperature-limited regions. But they largely disagree on the amount of carbon uptake. The historical CO increase has resulted in enhanced photosynthetic carbon fixation (Gross Primary Production, GPP), as can be evidenced from atmospheric CO concentration and satellite leaf area index measurements.

View Article and Find Full Text PDF
Article Synopsis
  • Satellite data shows that plants are growing more in places like China and India because of human actions and climate change.
  • China is a big player, making 25% of the world’s increase in plant growth, mostly from forests and farms.
  • Better farming techniques and more water use have helped food production in both countries increase by over 35% since 2000.
View Article and Find Full Text PDF

Evaluating the response of the land carbon sink to the anomalies in temperature and drought imposed by El Niño events provides insights into the present-day carbon cycle and its climate-driven variability. It is also a necessary step to build confidence in terrestrial ecosystems models' response to the warming and drying stresses expected in the future over many continents, and particularly in the tropics. Here we present an in-depth analysis of the response of the terrestrial carbon cycle to the 2015/2016 El Niño that imposed extreme warming and dry conditions in the tropics and other sensitive regions.

View Article and Find Full Text PDF

Plant water storage is fundamental to the functioning of terrestrial ecosystems by participating in plant metabolism, nutrient and sugar transport, and maintenance of the integrity of the hydraulic system of the plant. However, a global view of the size and dynamics of the water pools stored in plant tissues is still lacking. Here, we report global patterns of seasonal variations in ecosystem-scale plant water storage and their relationship with leaf phenology, based on space-borne measurements of L-band vegetation optical depth.

View Article and Find Full Text PDF

Amazon forests have experienced frequent and severe droughts in the past two decades. However, little is known about the large-scale legacy of droughts on carbon stocks and dynamics of forests. Using systematic sampling of forest structure measured by LiDAR waveforms from 2003 to 2008, here we show a significant loss of carbon over the entire Amazon basin at a rate of 0.

View Article and Find Full Text PDF

While climate warming reduces the occurrence of frost events, the warming-induced lengthening of the growing season of plants in the Northern Hemisphere may actually induce more frequent frost days during the growing season (GSFDs, days with minimum temperature < 0 °C). Direct evidence of this hypothesis, however, is limited. Here we investigate the change in the number of GSFDs at latitudes greater than 30° N using remotely-sensed and in situ phenological records and three minimum temperature (T) data sets from 1982 to 2012.

View Article and Find Full Text PDF

Warming is projected to increase the productivity of northern ecosystems. However, knowledge on whether the northward displacement of vegetation productivity isolines matches that of temperature isolines is still limited. Here we compared changes in the spatial patterns of vegetation productivity and temperature using the velocity of change concept, which expresses these two variables in the same unit of displacement per time.

View Article and Find Full Text PDF

This paper presents the theoretical basis of the algorithm designed for the generation of leaf area index and diurnal course of its sunlit portion from NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR). The Look-up-Table (LUT) approach implemented in the MODIS operational LAI/FPAR algorithm is adopted. The LUT, which is the heart of the approach, has been significantly modified.

View Article and Find Full Text PDF