Publications by authors named "Randy Stotler"

In coastal salinized groundwater systems, contamination from various nitrate (NO) inputs combined with complex hydrogeochemical processes make it difficult to distinguish NO sources and identify potential NO transformtation processes. Effective field-based NO studies in coastal areas are needed to improve the understanding of NO contamination dynamics in groundwater of such complex coastal systems. This study focuses on a typical Mediterranean coastal agricultural area, located in Tunisia, experiencing substantial NO contamination from multiple anthropogenic sources.

View Article and Find Full Text PDF

Implementing sustainable groundwater resources management in coastal areas is challenging due to the negative impacts of anthropogenic stressors and various interactions between groundwater and surface water. This study focuses on nitrate contamination and transport via groundwater-surface water exchange in a Mediterranean coastal area (Guerbes-Senhadja region, Algeria) that is heavily affected by anthropogenic activities. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δH, δO, H, δN and δO), is combined with a Bayesian isotope mixing model (MixSIAR) to (i) elucidate the nitrate sources and their apportionments in water systems, and (ii) describe potential interactions between groundwater and surface water.

View Article and Find Full Text PDF

This study focuses on coastal aquifers subject to uncontrolled land use development by investigating the combined effects of seawater intrusion and nitrate contamination. The research is undertaken in a Mediterranean coastal agricultural area (Plain of the El-Nil River, Algeria), where water resources are heavily impacted by anthropogenic activities. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δH, δO, δN and δO), is combined with a hydrochemical facies evolution diagram, and a Bayesian isotope mixing model (MixSIAR) to assess seawater contamination with its inland intrusion, and distinguish the nitrate sources and their apportionment.

View Article and Find Full Text PDF

The present study first describes the variations in concentrations of 12 chemical elements in groundwater relative to salinity levels in Southern Quebec (Canada) groundwater systems, and then uses this data to develop an empirical predictive model for evaluating groundwater chemical composition relative to salinity levels. Data is drawn from a large groundwater chemistry database containing 2608 samples. Eight salinity classes were established from lowest to highest chloride (Cl) concentrations.

View Article and Find Full Text PDF

This study provides the first characterization of the variability of bromine and chlorine stable isotopic composition in evaporites, associated residual brines, and shoreline gases in terrestrial evaporative saline lakes. The lakes investigated here are groundwater discharge locations, and include both potash-rich alkaline lakes and sodic-dominated neutral pH lakes at a variety of salinities and evaporative stages. The chlorine and bromine isotope systems behave consistently different during evaporative salt precipitation, with Cl more enriched in the salt than in the fluid, but Br more enriched in the fluid compared with the precipitated salt.

View Article and Find Full Text PDF

The potential for trichloroethene (TCE) biodegradation in a fractured dolomite aquifer at a former chemical disposal site in Smithville, Ontario, Canada, is assessed using chemical analysis and TCE and cis-DCE compound-specific isotope analysis of carbon and chlorine collected over a 16-month period. Groundwater redox conditions change from suboxic to much more reducing environments within and around the plume, indicating that oxidation of organic contaminants and degradation products is occurring at the study site. TCE and cis-DCE were observed in 13 of 14 wells sampled.

View Article and Find Full Text PDF

By using 233 isotope samples, we investigated the spatial and temporal variations of δ(18)O and δ(2)H in precipitation and surface water, and the contribution of different water sources in the rivers within the Tarim River Basin (TRB), which receives snow/glacier meltwater, groundwater, and rainfall. Our study revealed a similar seasonal pattern of precipitation δ(18)O and δ(2)H at both the north and south edges of the basin, indicating the dominant effect of westerly air masses in the summer and the combined influence of westerly and polar air masses during the winter, although the southern part showed more complex precipitation processes in the summer. River water in the basin has relatively large temporal variations in both δ(18)O and δ(2)H showing a distinct seasonal pattern with lower isotope values in May than in September.

View Article and Find Full Text PDF

Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost.

View Article and Find Full Text PDF

Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis ((18)O, (2)H, (3)H, (14)C, (13)C, (34)S, (18)O-SO(4), (87)Sr, (37)Cl).

View Article and Find Full Text PDF

We report the first investigation of a deep subpermafrost microbial ecosystem, a terrestrial analog for the Martian subsurface. Our multidisciplinary team analyzed fracture water collected at 890 and 1,130 m depths beneath a 540-m-thick permafrost layer at the Lupin Au mine (Nunavut, Canada). 14C, 3H, and noble gas isotope analyses suggest that the Na-Ca-Cl, suboxic, fracture water represents a mixture of geologically ancient brine, approximately25-kyr-old, meteoric water and a minor modern talik-water component.

View Article and Find Full Text PDF