Metasurfaces have recently opened up applications in the quantum regime, including quantum tomography and the generation of quantum entangled states. With their capability to store a vast amount of information by utilizing the various geometric degrees of freedom of nanostructures, metasurfaces are expected to be useful for processing quantum information. Here, we propose and experimentally demonstrate a programmable metasurface capable of performing quantum algorithms using both classical and quantum light with single photons.
View Article and Find Full Text PDFMetasurfaces provide a promising route for structuring light and generating holograms with designed amplitude, phase, and polarization profiles, leading to a versatile platform for integrating and constructing optical components beyond the conventional ones. At the same time, incorporating coincidence in imaging allows a high signal-to-noise ratio for imaging in very low light levels. As beneficial from the recent development in both metasurfaces and single-photon avalanche diode (SPAD) cameras, we combine the polarization-sensitive capability of metasurfaces with Hong-Ou-Mandel (HOM)-type interference in generating images with tailor-made two-photon interference and polarization coincidence signatures.
View Article and Find Full Text PDF