Publications by authors named "Randy Peterson"

As Pacific salmon ( spp.) decline across much of their range, it is imperative to further develop minimally invasive tools to quantify population abundance. One such advancement, trans-generational genetic mark-recapture (tGMR), uses parentage analysis to estimate the size of wild populations.

View Article and Find Full Text PDF

Ventilator-associated pneumonia (VAP) is common with mechanical ventilation. VAP bundles have improved outcomes in acute care and long-term acute care hospitals. This article reports on an implementation of a VAP bundle designed for a skilled nursing facility (SNF).

View Article and Find Full Text PDF

Sonic hedgehog (Shh) is a morphogen essential to the developing nervous system that continues to play an important role in adult life by contributing to cell proliferation and differentiation, maintaining blood-brain barrier integrity, and being cytoprotective against oxidative and excitotoxic stress, all features of importance in amyotrophic lateral sclerosis (ALS). ALS is a fatal disease characterized by selective loss of motor neurons due to poorly understood mechanisms. Evidence indicates that Shh might play an important role in ALS, and that Shh signaling might be also adversely affected in ALS.

View Article and Find Full Text PDF

The developmental morphogen Sonic hedgehog (Shh) may continue to play a sustaining role in adult motor neurons, of potential relevance to motor neuron diseases including amyotrophic lateral sclerosis. The Shh signaling pathway is incompletely understood and interactions with other signaling pathways are possible. We focus here on Notch, and first show that there is an almost linear reduction in light output from a Gli reporter in Shh Light II cells in the presence of increasing concentrations of the Notch inhibitor DAPT (r=0.

View Article and Find Full Text PDF

Background: The developmental morphogen sonic hedgehog (Shh) may continue to play a trophic role in the support of terminally-differentiated motor neurons, of potential relevance to motor neuron disease. In addition, it may support the proliferation and differentiation of endogenous stem cells along motor neuronal lineages. As such, we have examined the trophic and proliferative effects of Shh supplementation or Shh antagonism in embryonic spinal cord cell cultures derived from wildtype or G93A SOD1 mice, a mouse model of amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

We have previously demonstrated that primary cilia on spinal motor neurons are reduced in G93A SOD1 (mSOD) mice, a mouse model of amyotrophic lateral sclerosis (ALS). Sonic hedgehog (Shh) signaling involves the primary cilium and Shh has been shown to be cytoprotective in models of other neurodegenerative diseases. Thus, the Shh signaling pathway may bear further study in ALS.

View Article and Find Full Text PDF

Background: The primary cilium is a solitary organelle important in cellular signaling, that projects from the cell surface of most growth-arrested or post-mitotic cells including neurons in the central nervous system. We hypothesized that primary cilial dysfunction might play a role in the pathogenesis of Amyotrophic Lateral Sclerosis (ALS), and as a first step, report on the prevalence of primary cilial markers on cultured motor neurons from the lumbar spinal cord of embryonic wildtype (WT) and transgenic G93A SOD1 mice, and on motor neurons in situ in the lumbar spinal cord.

Results: At 7 days in culture there is no difference in the proportion of G93A SOD1 and WT motor neurons staining for the cilial marker ACIII.

View Article and Find Full Text PDF