Mango malformation disease (MMD) caused by spp. is an important limiting factor in most production areas worldwide. and have been reported as causing MMD in Mexico.
View Article and Find Full Text PDFThe Ambrosia Clade (AFC) is a monophyletic lineage within clade 3 of the species complex (FSSC) that currently comprises 19 genealogically exclusive species. These fungi are known or predicted to be farmed by adult female ambrosia beetles as a nutritional mutualism (Coleoptera: Scolytinae; Xyleborini). To date, only eight of the 19 AFC species have been described formally with Latin binomials.
View Article and Find Full Text PDF(rosy trumpet) is an economically important neotropical tree in Mexico that is highly valued for the quality of its wood, which is used for furniture, crafts, and packing, and for its use as an ornamental and shade tree in parks and gardens. During surveys conducted in the lower Balsas River Basin region in the states of Guerrero and Michoacán, symptoms of floral malformation were detected in trees. The main objectives of this study were to describe this new disease, to determine its causal agent, and to identify it using DNA sequence data.
View Article and Find Full Text PDFLaurel wilt, a lethal vascular wilt disease caused by the fungus Raffaelea lauricola, affects several tree species in the Lauraceae, including three Persea species. The susceptibility to laurel wilt of two forest tree species native to the southern USA, Persea borbonia and Persea palustris, [(Raf.) Sarg.
View Article and Find Full Text PDFNutritional mutualisms that ambrosia beetles have with fungi are poorly understood. Although these interactions were initially thought to be specific associations with a primary symbiont, there is increasing evidence that some of these fungi are associated with, and move among, multiple beetle partners. We examined culturable fungi recovered from mycangia of ambrosia beetles associated with trees of Persea humilis (silk bay, one site) and P.
View Article and Find Full Text PDFLike other members of the tribe Xyleborini, Eichhoff can cause economic damage in the Neotropics. has been found to acquire the laurel wilt pathogen (T. C.
View Article and Find Full Text PDFLike other ambrosia beetles, Xyleborus volvulus Fabricius (Coleoptera: Curculionidae) lives in a mutualistic symbiotic relationship with fungi that serve as food source. Until recently, X. volvulus was not considered a pest, and none of its symbionts were considered plant pathogens.
View Article and Find Full Text PDFWe summarize the information available on ambrosia beetle species that have been associated in Florida with Raffaelea lauricola T.C. Harr.
View Article and Find Full Text PDF() is a genus of more than 20 ophiostomatoid fungi commonly occurring in symbioses with wood-boring ambrosia beetles. We examined ambrosia beetles and plant hosts in the USA and Taiwan for the presence of these mycosymbionts and found 22 isolates representing known and undescribed lineages in . From 28S rDNA and β-tubulin sequences, we generated a molecular phylogeny of and observed morphological features of seven cultures representing undescribed lineages in .
View Article and Find Full Text PDFFactors that influence fungal communities in ambrosia beetle mycangia are poorly understood. The beetle that is responsible for spreading laurel wilt in SE USA, Xyleborus glabratrus, was examined at three sites along a 500 km N-S transect in Florida, each populated by host trees in the Lauraceae. Fungal phenotypes were quantified in mycangia of individual females that were collected from a site in Miami-Dade County (MDC), 25.
View Article and Find Full Text PDFBanana (Musa spp.) is one of the world's most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries.
View Article and Find Full Text PDFBanana (Musa spp.) is one of the world's most valuable primary agricultural commodities. Exported fruit are key commodities in several producing countries yet make up less than 15% of the total annual output of 145 million metric tons (MMT).
View Article and Find Full Text PDFLaurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area.
View Article and Find Full Text PDFLaurel wilt, caused by Raffaelea lauricola, is a destructive disease of avocado (Persea americana). The susceptibility of different cultivars and races was examined previously but more information is needed on how this host responds to the disease. In the present study, net CO2 assimilation (A), stomatal conductance of H2O (gs), transpiration (E), water use efficiency (WUE), and xylem sap flow rates were assessed in cultivars that differed in susceptibility.
View Article and Find Full Text PDFThe genus Raffaelea was established in 1965 when the type species, Raffaelea ambrosia, a symbiont of Platypus ambrosia beetles was described. Since then, many additional ambrosia beetle symbionts have been added to the genus, including the important tree pathogens Raffaelea quercivora, Raffaelea quercus-mongolicae, and Raffaelea lauricola, causal agents of Japanese and Korean oak wilt and laurel wilt, respectively. The discovery of new and the dispersal of described species of Raffaelea to new areas, where they can become invasive, presents challenges for diagnosticians as well as plant protection and quarantine efforts.
View Article and Find Full Text PDFThe mutualism between xyleborine beetles in the genus Euwallacea (Coleoptera: Curculionidae: Scolytinae) and members of the Ambrosia Fusarium Clade (AFC) represents one of 11 known evolutionary origins of fungiculture by ambrosia beetles. Female Euwallacea beetles transport fusarial symbionts in paired mandibular mycangia from their natal gallery to woody hosts where they are cultivated in galleries as a source of food. Native to Asia, several exotic Euwallacea species were introduced into the United States and Israel within the past two decades and they now threaten urban landscapes, forests and avocado production.
View Article and Find Full Text PDFMango (Mangifera indica) is regarded as the king of fruits in India, where it has been cultivated for at least 4,000 years and has great cultural and religious significance. Many Indian mango cultivars originated in the fifteenth century when the best selections of mango seedlings were propagated by grafting and planted in large orchards, in some cases numbering 100,000 trees. With the arrival of voyagers to India from Europe, mango was soon established throughout the tropics and subtropics.
View Article and Find Full Text PDFThe invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia) and swampbay (P. palustris) trees in the southeastern USA, threatens avocado (P.
View Article and Find Full Text PDFLaurel wilt, caused by the fungus Raffaelea lauricola, is an exotic disease that affects members of the Lauraceae plant family in the southeastern United States. The disease is spreading rapidly in native forests and is now found in commercial avocado groves in south Florida, where an accurate diagnostic method would improve disease management. A polymerase chain reaction (PCR) method based on amplifying the ribosomal small-subunit DNA, with a detection limit of 0.
View Article and Find Full Text PDFDiseases associated with ambrosia and bark beetles comprise some of the most significant problems that have emerged on trees in the last century. They are caused by fungi in the Ophiostomatales, Microascales, and Hypocreales, and have vectors in the Scolytinae (ambrosia and bark beetles) and Platypodinae (ambrosia beetles) subfamilies of the Curculionidae (Coleoptera). Some of these problems, such as Dutch elm disease, have a long history, have been extensively researched, and are fairly well understood.
View Article and Find Full Text PDFAmbrosia beetle fungiculture represents one of the most ecologically and evolutionarily successful symbioses, as evidenced by the 11 independent origins and 3500 species of ambrosia beetles. Here we document the evolution of a clade within Fusarium associated with ambrosia beetles in the genus Euwallacea (Coleoptera: Scolytinae). Ambrosia Fusarium Clade (AFC) symbionts are unusual in that some are plant pathogens that cause significant damage in naïve natural and cultivated ecosystems, and currently threaten avocado production in the United States, Israel and Australia.
View Article and Find Full Text PDFIn this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention.
View Article and Find Full Text PDFLaurel wilt, caused by the fungus Raffaelea lauricola, affects the growth, development, and productivity of avocado, Persea americana. This study evaluated the potential of visible-near infrared spectroscopy for non-destructive sensing of this disease. The symptoms of laurel wilt are visually similar to those caused by freeze damage (leaf necrosis).
View Article and Find Full Text PDFRedbay ambrosia beetle, Xyleborus glabratus Eichhoff, is an exotic wood-borer that vectors the fungal agent (Raffaelea lauricola) responsible for laurel wilt. Laurel wilt has had severe impact on forest ecosystems in the southeastern United States, killing a large proportion of native Persea trees, particularly redbay (P. borbonia) and swampbay (P.
View Article and Find Full Text PDF