Publications by authors named "Randon J"

Hydrodynamics, efficiency, and loading capacity of two semi-packed columns with different cross sections (NANO 315 µm x 18 µm; CAP 1000 µm x 28 µm) and similar pillar diameter and pillar-pillar distance (respectively 5 µm and 2.5 µm) have been compared in high-pressure gas chromatography. A flow prediction tool has been first designed to determine pressure variations and hold-up time across the chromatographic system taking into account the rectangular geometry of the ducts into the semi-packed columns.

View Article and Find Full Text PDF

The field of metabolomics based on mass spectrometry has grown considerably in recent years due to the need to detect and, above all, quantify a very large number of metabolites, simultaneously. Up to now, targeted multiplexed analysis on complex samples by Liquid Chromatography coupled with tandem Mass Spectrometry (LC-MS/MS) has relied almost exclusively on compound detection based on absolute retention times, as in the Scheduled-MRM (sMRM) approach. Those methods turn out to be poorly transferable from one instrument to another and result in a time-consuming and tedious method development involving a significant number of critical parameters that need specific re-optimisation.

View Article and Find Full Text PDF

Nano-gravimetric detector (NGD) has been recently introduced as miniaturized gas chromatography detector. The NGD response is based on an adsorption-desorption mechanism of compounds between the gaseous phase and the NGD porous oxide layer. The NGD response was characterized by hyphenating NGD in-line with FID detector and a chromatographic column.

View Article and Find Full Text PDF

During recent decades, ultrasmall inorganic nanoparticles have attracted considerable interest due to their favorable biodistribution, pharmacokinetics and theranostic properties. In particular, AGuIX nanoparticles made of polysiloxane and gadolinium chelates were successfully translated to the clinics. In an aqueous medium, these nanoparticles are in dynamic equilibrium with polysiloxane fragments due to the hydrolysis of Si-O-Si bonds.

View Article and Find Full Text PDF

The knowledge of the fate of metal-containing nanoparticles in biological media in aqueous media is of utmost importance for the future use of these promising theranostic agents for clinical applications. A methodology based on the combination of TDA-ICP-MS and CE-ICP-MS was applied to study the degradation pathway of AGuIX, a phase 2 clinical ultrasmall gadolinium-containing nanoparticle. Nanoparticle size measurements and gadolinium speciation performed in different media (phosphate buffer, urine and serum) demonstrated an accelerated dissolution of AGuIX in serum, without any release of free gadolinium for each medium.

View Article and Find Full Text PDF

Micro pillar array column with interpillar distance of 2.5 µm for pillars diameter of 5 µm has been introduced in high pressure gas chromatographic systems for online industrial analysis. Separation of gas mixtures have been performed under carrier gas pressure as high as 60 bar using rotating valve for gas injection without sample decompression stage prior to injection.

View Article and Find Full Text PDF

During past decade, special focus has been laid on ultrasmall nanoparticles for nanomedicine and eventual clinical translation. To achieve such translation, a lot of challenges have to be solved. Among them, size determination is a particularly tricky one.

View Article and Find Full Text PDF

A nano-gravimetric detector (NGD) for gas chromatography is based on a nanoelectromechanical array of adsorbent-coated resonating double clamped beams. NGD is a concentration-sensitive detector and its sensitivity is analyte-dependent based on the affinity of the analyte with the porous layer coated on the NEMS surface. This affinity is also strongly related to the NGD temperature (NGD working temperature can be dynamically set up from 40 to 220 °C), so the sensitivity can be tuned through temperature detector control.

View Article and Find Full Text PDF

Glycans analysis is challenging due to their immense structural diversity. Isotachophoresis was investigated as separation method for the purification of isobaric sulfated disaccharides prior to their characterization by Mass Spectrometry (MS) and tunable IR multiple photon dissociation (IRMPD). This proof of feasibility study was applied to the separation and characterization of chondroitin sulfate (CS) disaccharides.

View Article and Find Full Text PDF

In-line coupling of capillary columns is an effective means for achieving miniaturized and automated separation methods. The use of multimodal column designed to allow the direct integration of a sample preparation step to the separation column is one example. Herein we propose a novel in-line coupling at the capillary scale between a boronate affinity capillary column (μBAMC unit) and a reversed-phase separation column.

View Article and Find Full Text PDF

Compared to conventionnal bench top instruments, on-line GC analyzers require specific characteristics. On one hand, for some applications operating with a reactor pressure as high as several tens of bars, sample pressure has to be reduced before GC separation, or specific valves and columns have to be designed to perform separation with high carrier gas inlet pressure. On the other hand, informative detectors such as mass spectrometer are valuable but low maintenance detectors are prefered.

View Article and Find Full Text PDF

Affinity monolith columns of 375 nL (effective length 8.5 cm, internal diameter 75 μm) were developed for protein-ligand affinity investigations needing only 3 μg of human serum albumin (HSA). To promote specific interactions and avoid non-specific ones, different combinations of monolithic supports and bio-functionalization pathways were evaluated.

View Article and Find Full Text PDF

In this study, a new miniaturized and integrated analytical system was developed based on the in-line coupling of boronate affinity solid phase extraction with capillary isoelectric focusing separation and UV detection. This original coupling takes advantage of the selective enrichment of cis-diol-containing compounds using a boronate affinity sorbent and the exceptional focusing features of isoelectric focusing process. Such coupling has been used for preconcentration/purification and separation of urinary catecholamines (dopamine, adrenaline and noradrenaline) as proof of concept.

View Article and Find Full Text PDF

There is a need to determine time-weighted average concentrations of polar contaminants such as pesticides by passive sampling in environmental waters. Calibration data for silicone rubber-based passive samplers are lacking for this class of compounds. The calibration data, sampling rate (R ), and partition coefficient between silicone rubber and water (K ) were precisely determined for 23 pesticides and 13 candidate performance reference compounds (PRCs) in a laboratory calibration system over 14 d for 2 water flow velocities, 5 and 20 cm s .

View Article and Find Full Text PDF

The vacuum ultraviolet detector (VUV) is a very effective tool for chromatogram deconvolution and peak identification, and can also be used for quantification. To avoid quantitative issues in relation to time drift, such as variation of peak area or peak height, the detector response type has to be well defined. Due to the make-up flow and pressure regulation of make-up, the detector response (height of the peak) and peak area appeared to be dependent on experimental conditions such as inlet pressure and make-up pressure.

View Article and Find Full Text PDF
Article Synopsis
  • - The POCIS is a passive sampling device used to collect micropollutants, with an outer PES membrane and an inner HLB phase that allows for different patterns of chemical uptake, specifically modeled as CRK1 and CRK2.
  • - In earlier research, the study identified 30 micropollutants following the CRK1 model and 13 following the CRK2 model, and explored how the outer membrane's uptake may affect these models.
  • - The research also revealed that the lag time for micropollutants to penetrate the PES membrane increased with their hydrophobicity, and a factorial discriminant analysis achieved over 90% prediction confidence for the accumulation pattern based on properties like log D and polar surface
View Article and Find Full Text PDF

80% vinyltrimethoxysilane-based hybrid silica monoliths (80-VTMS), which have been initially developed for separation in reversed-phase liquid chromatography, have been investigated in high pressure gas chromatography separations (carrier gas pressure up to 60bar) and compared to silica monolithic columns. The behavior of both silica and 80-VTMS monolithic columns was investigated using helium, nitrogen and carbon dioxide as carrier gas. The efficiency of 80-VTMS monolithic columns was shown to vary differently than silica monolithic columns according to the temperature and the carrier gas used.

View Article and Find Full Text PDF

An integrated, miniaturized and fully automated system was developed for the analysis (preconcentration/purification, separation and detection) of cis-diol containing molecules in complex matrices. This innovative in-line coupling system was achieved via the in-situ and localized synthesis of a short segment of silica-based monolith at the inlet of a 75-μm inner diameter fused silica capillary. The monolithic segment was locally functionalized with an acrylamide derivative of phenylboronic acid by free radical photopolymerization within 10min of irradiation time.

View Article and Find Full Text PDF

Passive sampling techniques have been developed as an alternative method for in situ integrative monitoring of trace levels of neutral pesticides in environmental waters. The objective of this work was to develop a new receiving phase for pesticides with a wide range of polarities in a single step. We describe the development of three new composite silicone rubbers, combining polydimethylsiloxane mechanical and sorption properties with solid-phase extraction sorbents, prepared as a receiving phase for passive sampling.

View Article and Find Full Text PDF

Silicone rubber can extract organic compounds with a broad range of polarities (logKow>2-3) from aqueous samples. Such compounds include substances of major concern in the protection of aquatic ecosystems and human health, e.g.

View Article and Find Full Text PDF

In order to analyze light hydrocarbons mixtures with silica monolithic columns, a conventional gas chromatograph was modified to work with carrier gas pressure as high as 60bar. To understand hydrodynamic flow and retention with short columns (less than 30cm), special attention was required due to the temperature difference between the oven area and the FID detector which contain a significant length of the column. Efficiency and selectivity using various carrier gases (helium, nitrogen and carbon dioxide) at different inlet pressure for different oven temperature were studied.

View Article and Find Full Text PDF

Different synthesis routes have been implemented to prepare macroporous monoliths with vinyl pendant groups and micrometric skeletons and through-pore sizes. A standard process combining the synthesis of a widely used (methyltrimethoxysilane/tetramethoxysilane) (MTMS/TMOS) hybrid silica monolith and the postsilanization with vinyltrimethoxysilane (VTMS) was used as reference material (Vgr-MTMS). An alternative "one-pot" procedure was used to obtain vinylized hybrid monoliths.

View Article and Find Full Text PDF