A family of complexes of the type [Ru(tpbn)(IP-R)(4-pic)]Cl (tbpn=2,2'-(4-(-butyl)pyridine-2,6-diyl)bis(1,8-napthyridine); 4-pic=4-picoline; IP-R=imidazo[4,5-][1,10]phenanthroline attached to an aromatic group R for - and H for ) were prepared as near-infrared (NIR) absorbing coordination complexes to test whether triplet intraligand excited states (IL) of higher energy than the lowest-lying triplet metal-to-ligand charge transfer excited states (MLCT) could effectively generate cytotoxic singlet oxygen (O) and elicit in vitro photodynamic therapy (PDT) effects. Aromatic groups ranged from benzene to anthracene, with corresponding triplet state energies that were all significantly higher (approximately 3.7-1.
View Article and Find Full Text PDFThe design of near-infrared (NIR)-active photosensitizers (PSs) for light-based cancer treatments such as photodynamic therapy (PDT) has been a challenge. While several NIR-Ru scaffolds have been reported, this approach has not been proven in cells. This is the first report of NIR-Ru PSs that are phototoxic to cancer cells, including highly pigmented B16F10 melanoma cells.
View Article and Find Full Text PDFPhotochem Photobiol Sci
September 2019
The UV-induced oxidation of 2-(1'H-indol-2'-yl)-[1,5]naphthyridine acetonitrile solution in the presence of air leads to the formation of 2-(1,5-naphthyridin-2-yl)-4H-3,1-benzoxazin-4-one as a major product and N-(2-formylphenyl)-1,5-naphthyridine-2-carboxamide as a minor one. The probable reaction mechanisms are different for the two photoproducts and may involve both the reaction with singlet oxygen generated by the excited substrate or the reaction of the excited substrate with the ground state oxygen molecule. Electronic absorption and IR spectra indicate that both photoproducts are formed as mixtures of syn and anti-rotameric forms.
View Article and Find Full Text PDFThe realization of artificial photosynthesis carries the promise of cheap and abundant energy, however, significant advances in the rational design of water oxidation catalysts are required. Detailed information on the structure of the catalyst under reaction conditions and mechanisms of O-O bond formation should be obtained. Here, we used a combination of electron paramagnetic resonance (EPR), stopped flow freeze quench on a millisecond-second time scale, X-ray absorption (XAS), resonance Raman (RR) spectroscopy, and density functional theory (DFT) to follow the dynamics of the Ru-based single site catalyst, [Ru(NPM)(4-pic)(HO)] (NPM = 4-t-butyl-2,6-di(1',8'-naphthyrid-2'-yl)pyridine, pic = 4-picoline), under the water oxidation conditions.
View Article and Find Full Text PDFA series of Ru(II) complexes that behave as water oxidation catalysts were prepared involving a tetradentate equatorial ligand and two 4-substituted pyridines as the axial ligands. Two of these complexes were derived from 2,9-di-(pyrid-2'-yl)-1,10-phenanthroline (dpp) and examine the effect of incorporating electron-donating amino and bulky t-butyl groups on catalytic activity. A third complex replaced the two distal pyridines with N-methylimidazoles that are more electron-donating than the pyridines of dpp and potentially stabilize higher oxidation states of the metal.
View Article and Find Full Text PDF