In cryogenic electron microscopy (cryo-EM), specimen preparation remains a bottleneck despite recent advancements. Classical plunge freezing methods often result in issues like aggregation and preferred orientations at the air/water interface. Many alternative methods have been proposed, but there remains a lack a universal solution, and multiple techniques are often required for challenging samples.
View Article and Find Full Text PDFIn cryogenic electron microscopy (cryo-EM), specimen preparation remains a bottleneck despite recent advancements. Classical plunge freezing methods often result in issues like aggregation and preferred orientations at the air/water interface. Many alternative methods have been proposed, but there remains a lack a universal solution, and multiple techniques are often required for challenging samples.
View Article and Find Full Text PDFPrime editing enables a wide variety of precise genome edits in living cells. Here we use protein evolution and engineering to generate prime editors with reduced size and improved efficiency. Using phage-assisted evolution, we improved editing efficiencies of compact reverse transcriptases by up to 22-fold and generated prime editors that are 516-810 base pairs smaller than the current-generation editor PEmax.
View Article and Find Full Text PDFBase editors have substantial promise in basic research and as therapeutic agents for the correction of pathogenic mutations. The development of adenine transversion editors has posed a particular challenge. Here we report a class of base editors that enable efficient adenine transversion, including precise A•T-to-C•G editing.
View Article and Find Full Text PDFGenetically engineered mouse models only capture a small fraction of the genetic lesions that drive human cancer. Current CRISPR-Cas9 models can expand this fraction but are limited by their reliance on error-prone DNA repair. Here we develop a system for in vivo prime editing by encoding a Cre-inducible prime editor in the mouse germline.
View Article and Find Full Text PDFRealizing the promise of prime editing for the study and treatment of genetic disorders requires efficient methods for delivering prime editors (PEs) in vivo. Here we describe the identification of bottlenecks limiting adeno-associated virus (AAV)-mediated prime editing in vivo and the development of AAV-PE vectors with increased PE expression, prime editing guide RNA stability and modulation of DNA repair. The resulting dual-AAV systems, v1em and v3em PE-AAV, enable therapeutically relevant prime editing in mouse brain (up to 42% efficiency in cortex), liver (up to 46%) and heart (up to 11%).
View Article and Find Full Text PDFAdvances in electron detection have been essential to the success of high-resolution cryo-EM structure determination. A new generation of direct electron detector called the Apollo, has been developed by Direct Electron. The Apollo uses a novel event-based MAPS detector custom designed for ultra-fast electron counting.
View Article and Find Full Text PDFBuffer solutions are a critical component of the manufacturing process for therapeutic proteins and other biomolecules. The traditional way to make and use buffers is space and resource intensive, creating operational bottlenecks that impact efficiencies and costs. Here we describe a full-scale, current Good Manufacturing Practices (cGMP) capable buffer stock blending system that has an open-source, configurable design and that overcomes the challenges of traditional buffer preparation.
View Article and Find Full Text PDFPrime editing (PE) is a precision gene editing technology that enables the programmable installation of substitutions, insertions and deletions in cells and animals without requiring double-strand DNA breaks (DSBs). The mechanism of PE makes it less dependent on cellular replication and endogenous DNA repair than homology-directed repair-based approaches, and its ability to precisely install edits without creating DSBs minimizes indels and other undesired outcomes. The capabilities of PE have also expanded since its original publication.
View Article and Find Full Text PDFPrecursor molecules for biomass incorporation must be imported into cells and made available to the molecular machines that build the cell. Sulfur-containing macromolecules require that sulfur be in its S oxidation state before assimilation into amino acids, cofactors, and vitamins that are essential to organisms throughout the biosphere. In α-proteobacteria, NADPH-dependent assimilatory sulfite reductase (SiR) performs the final six-electron reduction of sulfur.
View Article and Find Full Text PDFMethods to deliver gene editing agents in vivo as ribonucleoproteins could offer safety advantages over nucleic acid delivery approaches. We report the development and application of engineered DNA-free virus-like particles (eVLPs) that efficiently package and deliver base editor or Cas9 ribonucleoproteins. By engineering VLPs to overcome cargo packaging, release, and localization bottlenecks, we developed fourth-generation eVLPs that mediate efficient base editing in several primary mouse and human cell types.
View Article and Find Full Text PDFPrime editing enables the installation of virtually any combination of point mutations, small insertions or small deletions in the DNA of living cells. A prime editing guide RNA (pegRNA) directs the prime editor protein to the targeted locus and also encodes the desired edit. Here we show that degradation of the 3' region of the pegRNA that contains the reverse transcriptase template and the primer binding site can poison the activity of prime editing systems, impeding editing efficiency.
View Article and Find Full Text PDFNew Dir Stud Leadersh
December 2020
Using the Aspen Young Leaders Fellowship as a case study, the authors assert that leadership educators have a responsibility to apply critical perspectives to their work with evidence-based practice, which involves interrogating assumptions as well as reconstructing pedagogical and design practices to increase equity in leadership education.
View Article and Find Full Text PDFBiological drug products are formulated with excipients to maintain stability over the shelf life of the product. Surfactants are added to the drug product to stabilize air-water interfaces known to induce protein aggregation. Early formulation development is focused on maintaining protein conformation and colloidal stability over the course of the drug product shelf life but rarely considers stability through dose preparation and administration.
View Article and Find Full Text PDFAs the field of electron microscopy advances, the increasing complexity of samples being produced demand more involved processing methods. In this study, we have developed a new processing method for generating 3D reconstructions of tubular structures. Tubular biomolecules are common throughout many cellular processes and are appealing targets for biophysical research.
View Article and Find Full Text PDFWe present solid-state NMR measurements of β-strand secondary structure and inter-strand organization within a 150-kDa oligomeric aggregate of the 42-residue variant of the Alzheimer's amyloid-β peptide (Aβ(1-42)). We build upon our previous report of a β-strand spanned by residues 30-42, which arranges into an antiparallel β-sheet. New results presented here indicate that there is a second β-strand formed by residues 11-24.
View Article and Find Full Text PDFThe targeting scope of Streptococcus pyogenes Cas9 (SpCas9) and its engineered variants is largely restricted to protospacer-adjacent motif (PAM) sequences containing G bases. Here we report the evolution of three new SpCas9 variants that collectively recognize NRNH PAMs (where R is A or G and H is A, C or T) using phage-assisted non-continuous evolution, three new phage-assisted continuous evolution strategies for DNA binding and a secondary selection for DNA cleavage. The targeting capabilities of these evolved variants and SpCas9-NG were characterized in HEK293T cells using a library of 11,776 genomically integrated protospacer-sgRNA pairs containing all possible NNNN PAMs.
View Article and Find Full Text PDFPolypores are cosmopolitan mushrooms, widely investigated for their beneficial properties in combatting multidrug resistant pathogens. The present study focuses on the need for new, naturally sourced antimicrobial and antioxidant compounds from mushrooms. The antioxidant and antibacterial activity of the phenolic extract of strains of (Pers.
View Article and Find Full Text PDFGiven the widespread use of deception in psychological experiments and the frequent recruitment of college students as participants, scholars have taken an interest in the ways college students assess the potential costs and benefits of deception studies. It stands to reason that the engagement of participants not as mere subjects, but rather as participant partners, demands at least an awareness of how such participants consider the moral dimensions of deception. To this end, the present study replicates a project conducted almost 25 years ago to determine whether today's college students think about deception in research any differently than their counterparts did in the early 1990s.
View Article and Find Full Text PDFDirect electron detectors (DEDs) have revolutionized cryo-electron microscopy (cryo-EM) by facilitating the correction of beam-induced motion and radiation damage, and also by providing high-resolution image capture. A new-generation DED, the DE64, has been developed by Direct Electron that has good performance in both integrating and counting modes. The camera has been characterized in both modes in terms of image quality, throughput and resolution of cryo-EM reconstructions.
View Article and Find Full Text PDFMost genetic variants that contribute to disease are challenging to correct efficiently and without excess byproducts. Here we describe prime editing, a versatile and precise genome editing method that directly writes new genetic information into a specified DNA site using a catalytically impaired Cas9 endonuclease fused to an engineered reverse transcriptase, programmed with a prime editing guide RNA (pegRNA) that both specifies the target site and encodes the desired edit. We performed more than 175 edits in human cells, including targeted insertions, deletions, and all 12 types of point mutation, without requiring double-strand breaks or donor DNA templates.
View Article and Find Full Text PDF