Background Aims: Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product.
View Article and Find Full Text PDFBackground: The human neural stem cell line CTX0E03 was developed for the cell based treatment of chronic stroke disability. Derived from fetal cortical brain tissue, CTX0E03 is a clonal cell line that contains a single copy of the c-mycERTAM transgene delivered by retroviral infection. Under the conditional regulation by 4-hydroxytamoxifen (4-OHT), c-mycERTAM enabled large-scale stable banking of the CTX0E03 cells.
View Article and Find Full Text PDFHuman neural stem cells offer the hope that a cell therapy treatment for Parkinson's disease (PD) could be made widely available. In this study, we describe two clonal human neural cell lines, derived from two different 10-week-old fetal mesencephalic tissues and immortalized with the c-mycER(TAM) transgene. Under the growth control of 4-hydroxytamoxifen, both cell lines display stable long-term growth in culture with a normal karyotype.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2007
Uridine triphosphate (UTP) constricts cerebral arteries by activating transduction pathways that increase cytosolic [Ca(2+)] and myofilament Ca(2+) sensitivity. The signaling proteins that comprise these pathways remain uncertain with recent studies implicating a role for several G proteins. To start clarifying which G proteins enable UTP-induced vasoconstriction, a small interfering RNA (siRNA) approach was developed to knock down specified targets in rat cerebral arteries.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2007
This study sought to define whether inward rectifying K(+) (K(IR)) channels were modulated by vasoactive stimuli known to depolarize and constrict intact cerebral arteries. Using pressure myography and patch-clamp electrophysiology, initial experiments revealed a Ba(2+)-sensitive K(IR) current in cerebral arterial smooth muscle cells that was active over a physiological range of membrane potentials and whose inhibition led to arterial depolarization and constriction. Real-time PCR, Western blot, and immunohistochemical analyses established the expression of both K(IR)2.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
March 2004
The extracellular matrix (ECM) influences a variety of cellular functions, including survival, adhesion molecule expression, differentiation, and migration. The ECM composition of the epithelial basement membrane is altered in asthmatics. In this study, we elucidate the major survival signals received by bronchial epithelial cells in vitro by studying the effects of a variety of ECM factors and soluble growth factors on bronchial epithelial cell survival.
View Article and Find Full Text PDFElevation of the intracellular free Ca(2+) concentration regulates many functional responses in airway smooth muscle, including contraction, proliferation, adhesion, and cell survival. This increase in calcium can be achieved by a release from internal stores (sarcoplasmic reticulum) and/or entry across the cell membrane from the extracellular environment. The molecular identity of this calcium influx pathway in human airway smooth muscle (HASM) remains unclear.
View Article and Find Full Text PDF