Human CLCA2 regulates store-operated calcium entry (SOCE) by interacting with Orai1 and STIM1. It is expressed as a 943aa type I transmembrane protein that is cleaved at amino acid 708 to produce a diffusible 100 kDa product. The N-terminal ectodomain contains a hydrolase-like subdomain with a conserved HEXXH zinc-binding motif that is proposed to cleave the precursor autoproteolytically.
View Article and Find Full Text PDFIntracellular Ca distribution is a tightly regulated process. Numerous Ca chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca ions and apportion or transport them to signaling hubs needing the cations.
View Article and Find Full Text PDFThe common currency of epithelial differentiation and homeostasis is calcium, stored primarily in the endoplasmic reticulum, rationed according to need, and replenished from the extracellular milieu via store-operated calcium entry (SOCE). This currency is disbursed by the IP3 receptor in response to diverse extracellular signals. The rate of release is governed by regulators of proliferation, autophagy, survival, and programmed cell death, the strength of the signal leading to different outcomes.
View Article and Find Full Text PDFThe Chloride Channel Accessory (CLCA) protein family was first characterized as regulators of calcium-activated chloride channel (CaCC) currents (ICaCC), but the mechanism has not been fully established. We hypothesized that CLCAs might regulate ICaCC by modulating intracellular calcium levels. In cells stably expressing human CLCA2 or vector, we found by calcium imaging that CLCA2 moderately enhanced intracellular-store release but dramatically increased store-operated entry of calcium upon cytosolic depletion.
View Article and Find Full Text PDFProstate cancer (PCa) is the most common cancer among men. Metabolic syndrome (MeS) is associated with increased PCa aggressiveness and recurrence. Previously, we proposed C-terminal binding protein 1 (CTBP1), a transcriptional co-repressor, as a molecular link between these two conditions.
View Article and Find Full Text PDFSilencing of virally transduced genes by promoter methylation and histone deacetylation has been a chronic problem both experimentally and therapeutically. We observed frequent silencing of the tetracycline-inducible Tet-On promoter borne by the Tripz lentivirus in mammary epithelial cell lines. We found that silencing could be prevented by continuous induction, but uninduced Tet-On gradually became uninducible, suggesting promoter modification.
View Article and Find Full Text PDFCLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT). To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening.
View Article and Find Full Text PDFThe transition of sessile epithelial cells to a migratory, mesenchymal phenotype is essential for metazoan development and tissue repair, but this program is exploited by tumor cells in order to escape the confines of the primary organ site, evade immunosurveillance, and resist chemo-radiation. In addition, epithelial-to-mesenchymal transition (EMT) confers stem-like properties that increase efficiency of colonization of distant organs. This review evaluates the role of cell-cell junctions in suppressing EMT and maintaining a quiescent epithelium.
View Article and Find Full Text PDFProtein tyrosine phosphatases (PTPs) tightly regulate tyrosine phosphorylation essential for cell growth, adhesion, migration, and survival. We performed a mutational analysis of the PTP gene family in cutaneous metastatic melanoma and identified 23 phosphatase genes harboring somatic mutations. Among these, receptor-type tyrosine-protein phosphatase delta (PTPRD) was one of the most highly mutated genes, harboring 17 somatic mutations in 79 samples, a prevalence of 21.
View Article and Find Full Text PDFThe epithelial to mesenchymal transition (EMT) is a developmental program in which epithelial cells downregulate their cell-cell junctions, acquire spindle cell morphology and exhibit cellular motility. In breast cancer, EMT facilitates invasion of surrounding tissues and correlates closely with cancer metastasis and relapse. We found previously that the candidate tumor suppressor CLCA2 is expressed in differentiated, growth-arrested mammary epithelial cells but is downregulated during tumor progression and EMT.
View Article and Find Full Text PDFRecurrence at secondary locations, often years after removal of the primary tumor, accounts for most of the mortality associated with solid tumors. Metastasis, resistance to chemo- and radiotherapy, and eventual relapse have been attributed to a distinct tumor subpopulation known as cancer stem cells (CSCs). In this review, we consider the properties of CSCs that lead to these outcomes, in particular the relation between epithelial-to-mesenchymal transition, stemness, and tumor initiation.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2011
It is now well established that p53 is the primary arbiter of stress-response and the principal barrier to neoplastic processes at the cellular level. Perhaps the most potent weapon in p53's tumor suppressive arsenal is apoptosis, enacted as a last resort when all other remedies are exhausted. Initially, the mechanism was thought to be simply activation or repression of Bcl-2 family members by p53.
View Article and Find Full Text PDFCancer stem cells are commonly isolated by cell sorting for surface antigens that typify stem cells. This technique is very expensive, requiring advanced, high-speed sorters and high-quality antibodies, and yields are often low. Some stem cells can be isolated based on ability to exclude dyes, conferred by expression of membrane transporters, but this property is not universal.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2010
By a multiplicity of mechanisms, hypoxia and acidosis create a nurturing environment for tumor progression and the evolution of metastatic, drug-resistant cells. Acidosis drives mutagenesis and promotes the subversion of checkpoints and apoptotic mechanisms. Hypoxic tissues secrete cytokines that undermine normal anti-tumor surveillance by macrophages, turning them into accomplices and facilitators of invasion and angiogenesis.
View Article and Find Full Text PDFhCLCA2 is frequently down-regulated in breast cancer and is a candidate tumor suppressor gene. We show here that the hCLCA2 gene is strongly induced by p53 in response to DNA damage. Adenoviral expression of p53 induces hCLCA2 in a variety of breast cell lines.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2009
The tumor suppressor p53 negatively regulates a number of genes, including the proto-oncogene c-Myc, in addition to activating many other genes. One mechanism of the p53-mediated c-Myc repression may involve transcriptional regulation. However, it is not clear whether microRNAs (miRNAs) play a role in the p53-mediated posttranscriptional regulation of c-Myc.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
July 2008
Ca(+)-activated Cl(-) channel (CLCA) proteins are encoded by a family of highly related and clustered genes in mammals that are markedly upregulated in inflammation and have been shown to affect chloride transport. Here we describe the cellular processing and regulatory sequences underlying murine (m) CLCA4 proteins. The 125-kDa mCLCA4 gene product is cleaved to 90- and 40-kDa fragments, and the NH(2)- and COOH-terminal fragments are secreted, where they are found in cell media and associated with the plasma membrane.
View Article and Find Full Text PDFp53 is the primary arbiter of the mammalian cell's response to stress, the governor of life and death. It is the nexus upon which signals converge from an array of sensors that detect damage to DNA or to the mitotic spindle or the cytoskeleton, hypoxia, cell detachment, growth factor deprivation, oncogene expression and other forms of stress. Depending on the type, intensity and duration of the signals, p53 in turn transactivates batteries of genes specifying cell cycle arrest, DNA repair, apoptosis, or other anti-neoplastic functions.
View Article and Find Full Text PDFMembers of the chloride channels, calcium-activated (CLCA) family of proteins and in particular the murine mCLCA3 (alias gob-5) and its human ortholog hCLCA1 have been identified as clinically relevant molecules in diseases with secretory dysfunctions including asthma and cystic fibrosis. Initial studies have indicated that these proteins evoke a calcium-activated chloride conductance when transfected into human embryonic kidney cells 293 cells. However, it is not yet clear whether the CLCA proteins form chloride channels per se or function as mediators of other, yet unknown chloride channels.
View Article and Find Full Text PDFCalcium-activated chloride channel (CLCA) proteins were first described as a family of plasma membrane Cl(-) channels that could be activated by calcium. Genetic and electrophysiological studies have supported this view. The human CLCA2 protein is expressed as a 943-amino-acid precursor whose N-terminal signal sequence is removed followed by internal cleavage near amino acid position 680.
View Article and Find Full Text PDFThe mammary gland reaches a fully differentiated phenotype at lactation, a stage characterized by the abundant expression of beta-casein. We have investigated the expression and regulation of gap junction proteins (connexins, Cx) during the various developmental stages of mouse mammary gland. Immunohistochemical analysis, with specific antibodies, reveals that Cx26 and Cx32 are expressed and confined to the cell borders of luminal epithelial cells in all developmental stages of the gland.
View Article and Find Full Text PDFThe calcium-activated chloride channel hCLCA2 has been identified as a candidate tumor suppressor in human breast cancer. It is greatly down-regulated in breast cancer, and its re-expression suppresses tumorigenesis by an unknown mechanism. To establish a mouse model, we identified the mouse ortholog of hCLCA2, termed mCLCA5, and investigated its behavior in mammary epithelial cell lines and tissues.
View Article and Find Full Text PDFCLCA (chloride channel, calcium-activated) proteins are novel pulmonary vascular addresses for blood-borne, lung-metastatic cancer cells. They facilitate vascular arrest of cancer cells via adhesion to beta4 integrin and promote early, intravascular, metastatic growth. Here we identify the interacting binding domains of endothelial CLCA proteins (e.
View Article and Find Full Text PDFEarly metastatic growth occurs at sites of vascular arrest of blood-borne cancer cells and is entirely intravascular. Here we show that lung colonization by B16-F10 cells is licensed by beta(4) integrin adhesion to the mouse lung endothelial Ca(2+)-activated chloride channel protein mCLCA1. In a manner independent of Met, beta(4) integrin-mCLCA1-ligation leads to complexing with and activation of focal adhesion kinase (FAK) and downstream signaling to extracellular signal-regulated kinase (ERK).
View Article and Find Full Text PDFTo identify the gene products responsible for the calcium-activated chloride current in smooth muscle, reverse transcription-PCR with degenerate primers was performed on mouse intestine and other organs. A new member of the CLCA gene family was identified, mCLCA4, that is expressed preferentially in organs containing a high percentage of smooth muscle cells, including intestine, stomach, uterus, bladder, and aorta. Reverse transcription-PCR using template RNA prepared from mouse bladder and stomach smooth muscle layers dissected free of mucosa yielded mCLCA4-specific bands.
View Article and Find Full Text PDF