The quantum Hall (QH) effect is one of the most widely studied physical phenomenon in two dimensions. The plateau-plateau transition within this effect can be comprehensively described by the scaling theory, which encompasses three pivotal exponents: the critical exponent κ, the inelastic scattering exponent p, and the universal exponent γ. Prior studies have focused on measuring κ and estimating γ, assuming a constant p value of 2 across magnetic fields.
View Article and Find Full Text PDFPhotoemission electron microscopy (PEEM) is a unique and powerful tool for studying the electronic properties of materials and surfaces. However, it requires intense and well-controlled light sources with photon energies ranging from the UV to soft X-rays for achieving high spatial resolution and image contrast. Traditionally, many PEEMs were installed at synchrotron light sources to access intense and tunable soft X-rays.
View Article and Find Full Text PDFHere, we report the effects of enhanced magnetic fields resulting from type-II superconducting NbTiN slabs adjacent to narrow Hall bar devices fabricated from epitaxial graphene. Observed changes in the magnetoresistances were found to have minimal contributions from device inhomogeneities, magnet hysteresis, electron density variations along the devices, and transient phenomena. We hypothesize that Abrikosov vortices, present in type-II superconductors, contribute to these observations.
View Article and Find Full Text PDFAs first recognized in 2010, epitaxial graphene on SiC(0001) provides a platform for quantized Hall resistance (QHR) metrology unmatched by other two-dimensional structures and materials. Here we report graphene parallel QHR arrays, with metrologically precise quantization near 1000 Ω. These arrays have tunable carrier densities, due to uniform epitaxial growth and chemical functionalization, allowing quantization at the robust = 2 filling factor in array devices at relative precision better than 10.
View Article and Find Full Text PDFIEEE Trans Electron Devices
July 2021
A new type of graphene-based quantum Hall standards is tested for electrical quantum metrology applications at alternating current (ac) and direct current (dc). The devices are functionalized with Cr(CO) to control the charge carrier density and have branched Hall contacts based on NbTiN superconducting material. The work is an in-depth study about the characteristic capacitances and related losses in the ac regime of the devices and about their performance during precision resistance measurements at dc and ac.
View Article and Find Full Text PDFWe report on nonreciprocity observations in several configurations of graphene-based quantum Hall devices. Two distinct measurement configurations were adopted to verify the universality of the observations (i.e.
View Article and Find Full Text PDFThe magnetotransport properties of a hybrid InSe/monolayer graphene in a SiC system are systematically studied. Compared to those of its bare graphene counterpart, in InSe/graphene, we can effectively modify the carrier density, mobility, effective mass, and electron-electron (e-e) interactions enhanced by weak disorder. We show that in bare graphene and hybrid InSe/graphene systems, the logarithmic temperature (lnT) dependence of the Hall slope R = δR /δB = δρ /δB can be used to probe e-e interaction effects at various temperatures even when the measured resistivity does not show a lnT dependence due to strong electron-phonon scattering.
View Article and Find Full Text PDFA graphene quantized Hall resistance (QHR) device fabricated at the National Institute of Standards and Technology (NIST) was measured alongside a GaAs QHR device fabricated by the National Research Council of Canada (NRC) by comparing them to a 1 kΩ standard resistor using a cryogenic current comparator. The two devices were mounted in a custom developed dual probe that was then assessed for its viability as a suitable apparatus for precision measurements. The charge carrier density of the graphene device exhibited controllable tunability when annealed after Cr(CO) functionalization.
View Article and Find Full Text PDFPrecision quantum Hall resistance measurements can be greatly improved when implementing new electrical contact geometries made from superconducting NbTiN. The sample designs described here minimize undesired resistances at contacts and interconnections, enabling further enhancement of device size and complexity when pursuing next-generation quantized Hall resistance devices.
View Article and Find Full Text PDFIEEE Trans Instrum Meas
January 2020
This work presents one solution for long-term storage of epitaxial graphene (EG) in air, namely through the functionalization of millimeter-scale devices with chromium tricarbonyl - Cr(CO). The carrier density may be tuned reproducibly by annealing below 400 K due to the presence of Cr(CO). All tuning is easily reversible with exposure to air, with the idle, in-air, carrier density always being close to the Dirac point.
View Article and Find Full Text PDFMeasurements of fractional multiples of the = 2 plateau quantized Hall resistance ( ≈ 12906 Ω) were enabled by the utilization of multiple current terminals on millimetre-scale graphene junction devices fabricated with interfaces along both lateral directions. These quantum Hall resistance checkerboard devices have been demonstrated to match quantized resistance outputs numerically calculated with the LTspice circuit simulator. From the devices' functionality, more complex embodiments of the quantum Hall resistance checkerboard were simulated to highlight the parameter space within which these devices could operate.
View Article and Find Full Text PDFPhysica B Condens Matter
January 2020
A mathematical approach is introduced for predicting quantized resistances in graphene junction devices that utilize more than a single entry and exit point for electron flow. Depending on the configuration of an arbitrary number of terminals, electrical measurements yield nonconventional, fractional multiples of the typical quantized Hall resistance at the = 2 plateau ( ≈ 12906 Ω) and take the form: . This theoretical formulation is independent of material, and applications to other material systems that exhibit quantum Hall behaviors are to be expected.
View Article and Find Full Text PDFThe unique properties of the quantum Hall effect allow one to revisit traditional measurement circuits with a new flavour. In this paper we present the first realization of a quantum Hall Kelvin bridge for the calibration of standard resistors directly against the quantum Hall resistance. The bridge design is particularly simple and requires a minimal number of instruments.
View Article and Find Full Text PDFSolution-processed graphene inks that use ethyl cellulose as a polymer stabilizer are blade-coated into large-area thin films. Following blade-coating, the graphene thin films are cured to pyrolyze the cellulosic polymer, leaving behind an sp-rich amorphous carbon residue that serves as a binder in addition to facilitating charge transport between graphene flakes. Systematic charge transport measurements, including temperature-dependent Hall effect and non-contact microwave resonant cavity characterization, reveal that the resulting electrically percolating graphene thin films possess high mobility (≈ 160 cm V s), low energy gap, and thermally activated charge transport, which develop weak localization behavior at cryogenic temperatures.
View Article and Find Full Text PDFSilicon carbide (SiC) has already found useful applications in high-power electronic devices and light-emitting diodes (LEDs). Interestingly, SiC is a suitable substrate for growing monolayer epitaxial graphene and GaN-based devices. Therefore, it provides the opportunity for integration of high-power devices, LEDs, atomically thin electronics, and high-frequency devices, all of which can be prepared on the same SiC substrate.
View Article and Find Full Text PDFMonolayer epitaxial graphene (EG) has been shown to have clearly superior properties for the development of quantized Hall resistance (QHR) standards. One major difficulty with QHR devices based on EG is that their electrical properties drift slowly over time if the device is stored in air due to adsorption of atmospheric molecular dopants. The crucial parameter for device stability is the charge carrier density, which helps determine the magnetic flux density required for precise QHR measurements.
View Article and Find Full Text PDFThe quantum Hall effect (QHE), and devices reliant on it, will continue to serve as the foundation of the ohm while also expanding its territory into other SI derived units. The foundation, evolution, and significance of all of these devices exhibiting some form of the QHE will be described in the context of optimizing future electrical resistance standards. As the world adapts to using the quantum SI, it remains essential that the global metrology community pushes forth and continues to innovate and produce new technologies for disseminating the ohm and other electrical units.
View Article and Find Full Text PDFThis work presents precision measurements of quantized Hall array resistance devices using superconducting, crossover-free, multiple interconnections as well as graphene split contacts. These new techniques successfully eliminate the accumulation of internal resistances and leakage currents that typically occur at interconnections and crossing leads between interconnected devices. As a result, a scalable quantized Hall resistance array is obtained with a nominal value that is as precise and stable as that from single-element quantized Hall resistance standards.
View Article and Find Full Text PDFIEEE Trans Instrum Meas
January 2019
Several graphene quantized Hall resistance (QHR) devices manufactured at the National Institute of Standards and Technology (NIST) were compared to GaAs QHR devices and a 100 Ω standard resistor at the National Institute for Advanced Industrial Science and Technology (AIST). Measurements of the 100 Ω resistor with the graphene QHR devices agreed within 5 nΩ/Ω of the values for the 100 Ω resistor obtained through GaAs measurements. The electron density of the graphene devices was adjusted at AIST to restore device properties such that operation was possible at low magnetic flux densities of 4 T to 6 T.
View Article and Find Full Text PDFIn this paper, we show that quantum Hall resistance measurements using two terminals may be as precise as four-terminal measurements when applying superconducting split contacts. The described sample designs eliminate resistance contributions of terminals and contacts such that the size and complexity of next-generation quantized Hall resistance devices can be significantly improved.
View Article and Find Full Text PDFWe report the fabrication and measurement of top gated epitaxial graphene p-n junctions where exfoliated hexagonal boron nitride (h-BN) is used as the gate dielectric. The four-terminal longitudinal resistance across a single junction is well quantized at the von Klitzing constant [Formula: see text] with a relative uncertainty of 10. After the exploration of numerous parameter spaces, we summarize the conditions upon which these devices could function as potential resistance standards.
View Article and Find Full Text PDFThe information provided in this data article will cover the growth parameters for monolayer, epitaxial graphene, as well as how to verify the layer homogeneity by confocal laser scanning and optical microscopy. The characterization of the subsequently fabricated quantum Hall device is shown for example cases during a series of environmental exposures. Quantum Hall data acquired from a CYTOP encapsulation is also provided.
View Article and Find Full Text PDFHomogeneous, single-crystal, monolayer epitaxial graphene (EG) is the one of most promising candidates for the advancement of quantized Hall resistance (QHR) standards. A remaining challenge for the electrical characterization of EG-based quantum Hall devices as a useful tool for metrology is that they are electrically unstable when exposed to air due to the adsorption of and interaction with atmospheric molecular dopants. The resulting changes in the charge carrier density become apparent by variations in the surface conductivity, the charge carrier mobility, and may result in a transition from n-type to p-type conductivity.
View Article and Find Full Text PDF