Complex in vitro models (CIVMs) offer the potential to increase the clinical relevance of preclinical efficacy and toxicity assessments and reduce the reliance on animals in drug development. The European Society of Toxicologic Pathology (ESTP) and Society for Toxicologic Pathology (STP) are collaborating to highlight the role of pathologists in the development and use of CIVM. Pathologists are trained in comparative animal medicine which enhances their understanding of mechanisms of human and animal diseases, thus allowing them to bridge between animal models and humans.
View Article and Find Full Text PDFNeural organoids have revolutionized how human neurodevelopmental disorders (NDDs) are studied. Yet, their utility for screening complex NDD etiologies and in drug discovery is limited by a lack of scalable and quantifiable derivation formats. Here, we describe the RosetteArray platform's ability to be used as an off-the-shelf, 96-well plate assay that standardizes incipient forebrain and spinal cord organoid morphogenesis as micropatterned, 3-D, singularly polarized neural rosette tissues (>9000 per plate).
View Article and Find Full Text PDFEmbryonic stem cells (ESCs) can self-organize into developmental patterns with spatial organization and molecular similarity to that of early embryonic stages. This self-organization of ESCs requires transmission of signaling cues, via addition of small molecule chemicals or recombinant proteins, to induce distinct embryonic cellular fates and subsequent assembly into structures that can mimic aspects of early embryonic development. During natural embryonic development, different embryonic cell types co-develop together, where each cell type expresses specific fate-inducing transcription factors through activation of non-coding regulatory elements and interactions with neighboring cells.
View Article and Find Full Text PDFAdvances within in vitro biological system complexity have enabled new possibilities for the "Organs-on-a-Chip" field. Microphysiological systems (MPS) as such incorporate sophisticated biological constructs with custom biological sensors. For microelectromechanical systems (MEMS) sensors, the dielectric layer is critical for device performance, where silicon dioxide (SiO) represents an excellent candidate due to its biocompatibility and wide utility in MEMS devices.
View Article and Find Full Text PDFBackground: Despite their large numbers and widespread use, very little is known about the extent to which per- and polyfluoroalkyl substances (PFAS) can cross the placenta and expose the developing fetus.
Objective: The aim of our study is to develop a computational approach that can be used to evaluate the of extend to which small molecules, and in particular PFAS, can cross to cross the placenta and partition to cord blood.
Methods: We collected experimental values of the concentration ratio between cord and maternal blood (R) for 260 chemical compounds and calculated their physicochemical descriptors using the cheminformatics package Mordred.
Our inability to derive the neuronal diversity that comprises the posterior central nervous system (pCNS) using human pluripotent stem cells (hPSCs) poses an impediment to understanding human neurodevelopment and disease in the hindbrain and spinal cord. Here, we establish a modular, monolayer differentiation paradigm that recapitulates both rostrocaudal (R/C) and dorsoventral (D/V) patterning, enabling derivation of diverse pCNS neurons with discrete regional specificity. First, neuromesodermal progenitors (NMPs) with discrete profiles are converted to pCNS progenitors (pCNSPs).
View Article and Find Full Text PDFThree dimensional, self-assembled organoids that recapitulate key developmental and organizational events during embryogenesis have proven transformative for the study of human central nervous system (CNS) development, evolution, and disease pathology. Brain organoids have predominated the field, but human pluripotent stem cell (hPSC)-derived models of the spinal cord are on the rise. This has required piecing together the complex interactions between rostrocaudal patterning, which specifies axial diversity, and dorsoventral patterning, which establishes locomotor and somatosensory phenotypes.
View Article and Find Full Text PDFNeurally differentiating human pluripotent stem cells (hPSCs) possess the ability to self-organize into structures reminiscent of the developing fetal brain. In 2- and 3D cultures, this phenomenon initiates with formation of polarized areas of neural stem cells (NSCs), known as rosettes that resemble cross-sectional slices of the embryonic neural tube, i.e.
View Article and Find Full Text PDFSemin Cell Dev Biol
March 2021
Over the last decade, scientists have begun to model CNS development, function, and disease in vitro using human pluripotent stem cell (hPSC)-derived organoids. Using traditional protocols, these 3D tissues are generated by combining the innate emergent properties of differentiating hPSC aggregates with a bioreactor environment that induces interstitial transport of oxygen and nutrients and an optional supportive hydrogel extracellular matrix (ECM). During extended culture, the hPSC-derived neural organoids (hNOs) obtain millimeter scale sizes with internal microscale cytoarchitectures, cellular phenotypes, and neuronal circuit behaviors mimetic of those observed in the developing brain, eye, or spinal cord.
View Article and Find Full Text PDFThe European Partnership for Alternative Approaches to Animal Testing (EPAA) convened a 'Blue Sky Workshop' on new ideas for non-animal approaches to predict repeated-dose systemic toxicity. The aim of the Workshop was to formulate strategic ideas to improve and increase the applicability, implementation and acceptance of modern non-animal methods to determine systemic toxicity. The Workshop concluded that good progress is being made to assess repeated dose toxicity without animals taking advantage of existing knowledge in toxicology, thresholds of toxicological concern, adverse outcome pathways and read-across workflows.
View Article and Find Full Text PDFReprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) generates valuable resources for disease modeling, toxicology, cell therapy, and regenerative medicine. However, the reprogramming process can be stochastic and inefficient, creating many partially reprogrammed intermediates and non-reprogrammed cells in addition to fully reprogrammed iPSCs. Much of the work to identify, evaluate, and enrich for iPSCs during reprogramming relies on methods that fix, destroy, or singularize cell cultures, thereby disrupting each cell's microenvironment.
View Article and Find Full Text PDFNeuroepithelial stem cells (NSC) from different anatomical regions of the embryonic neural tube's rostrocaudal axis can differentiate into diverse central nervous system tissues, but the transcriptional regulatory networks governing these processes are incompletely understood. Here, we measure region-specific NSC gene expression along the rostrocaudal axis in a human pluripotent stem cell model of early central nervous system development over a 72-h time course, spanning the hindbrain to cervical spinal cord. We introduce Escarole, a probabilistic clustering algorithm for non-stationary time series, and combine it with prior-based regulatory network inference to identify genes that are regulated dynamically and predict their upstream regulators.
View Article and Find Full Text PDFRecent advances in bioengineering have enabled cell culture systems that more closely mimic the native cellular environment. Here, we demonstrated that human induced pluripotent stem cell (iPSC)-derived myogenic progenitors formed highly-aligned myotubes and contracted when seeded on two-dimensional micropatterned platforms. The differentiated cells showed clear nuclear alignment and formed elongated myotubes dependent on the width of the micropatterned lanes.
View Article and Find Full Text PDFTwo-dimensional (2D) human skeletal muscle fiber cultures are ill-equipped to support the contractile properties of maturing muscle fibers. This limits their application to the study of adult human neuromuscular junction (NMJ) development, a process requiring maturation of muscle fibers in the presence of motor neuron endplates. Here we describe a three-dimensional (3D) co-culture method whereby human muscle progenitors mixed with human pluripotent stem cell-derived motor neurons self-organize to form functional NMJ connections.
View Article and Find Full Text PDFIn tissue engineering applications, sacrificial molding of hydrogel monoliths is a versatile technique for creating 3D molds to control tissue morphology. Previous sacrificial templates fabricated by serial processes such as solvent casting and thermal extrusion/fiber drawing can be used to effectively mold internal geometries within rapidly polymerizing, bulk curing hydrogels. However, they display poorer performance in controlling the geometry of diffusion limited, ionically cross-linked hydrogels, such as alginate.
View Article and Find Full Text PDFHuman pluripotent stem cell (hPSC)-derived neural organoids display unprecedented emergent properties. Yet in contrast to the singular neuroepithelial tube from which the entire central nervous system (CNS) develops in vivo, current organoid protocols yield tissues with multiple neuroepithelial units, a.k.
View Article and Find Full Text PDFBackground: Transplantation of human pluripotent stem cell (hPSC)-derived neurons into chick embryos is an established preliminary assay to evaluate engraftment potential. Yet, with recent advances in deriving diverse human neuronal subtypes, optimizing and standardizing such transplantation methodology for specific subtypes at their correlated anatomical sites is still required.
New Method: We determined the optimal stage of hPSC-derived motor neuron (hMN) differentiation for ex ovo transplantation, and developed a single injection protocol that implants hMNs throughout the spinal cord enabling broad regional engraftment possibilities.
The conserved coat protein complex II (COPII) mediates the initial steps of secretory protein trafficking by assembling onto subdomains of the endoplasmic reticulum (ER) in two layers to generate cargo-laden transport carriers that ultimately fuse with an adjacent ER-Golgi intermediate compartment (ERGIC). Here, we demonstrate that Trk-fused gene (TFG) binds directly to the inner layer of the COPII coat. Specifically, the TFG C terminus interacts with Sec23 through a shared interface with the outer COPII coat and the cargo receptor Tango1/cTAGE5.
View Article and Find Full Text PDFCurr Opin Biotechnol
October 2017
Progress in deriving a spectrum of central nervous system cell phenotypes from human pluripotent stem cells has spurred significant advances in in vitro modeling and development of regenerative therapies for neurological disorders. While the clinical impact of these advances is still being evaluated, their integration with advanced tissue engineering methodologies and therapeutic approaches that induce neural circuit plasticity, respectively, remain underexplored frontiers.
View Article and Find Full Text PDFUnlabelled: Three-dimensional organoids derived from human pluripotent stem cell (hPSC) derivatives have become widely used in vitro models for studying development and disease. Their ability to recapitulate facets of normal human development during in vitro morphogenesis produces tissue structures with unprecedented biomimicry. Current organoid derivation protocols primarily rely on spontaneous morphogenesis processes to occur within 3-D spherical cell aggregates with minimal to no exogenous control.
View Article and Find Full Text PDFUnderstanding the mechanisms underpinning cellular responses to microenvironmental cues requires tight control not only of the complex milieu of soluble signaling factors, extracellular matrix (ECM) connections and cell-cell contacts within cell culture, but also of the biophysics of human cells. Advances in biomaterial fabrication technologies have recently facilitated detailed examination of cellular biophysics and revealed that constraints on cell geometry arising from the cellular microenvironment influence a wide variety of human cell behaviors. Here, we create an in vitro platform capable of precise and independent control of biochemical and biophysical microenvironmental cues by adapting microcontact printing technology into the format of standard six- to 96-well plates to create MicroContact Printed Well Plates (μCP Well Plates).
View Article and Find Full Text PDFColinear HOX expression during hindbrain and spinal cord development diversifies and assigns regional neural phenotypes to discrete rhombomeric and vertebral domains. Despite the precision of HOX patterning in vivo, in vitro approaches for differentiating human pluripotent stem cells (hPSCs) to posterior neural fates coarsely pattern HOX expression thereby generating cultures broadly specified to hindbrain or spinal cord regions. Here, we demonstrate that successive activation of fibroblast growth factor, Wnt/β-catenin, and growth differentiation factor signaling during hPSC differentiation generates stable, homogenous SOX2(+)/Brachyury(+) neuromesoderm that exhibits progressive, full colinear HOX activation over 7 days.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2015
Polyamidoamine (PAMAM) dendrimer was conjugated with both carboxymethyl-β-cyclodextrin (βCD) and poly(ethylene glycol) (PEG). Cyclic RGD peptide, used as a tumor targeting ligand, was then selectively conjugated onto the distal ends of the PEG arms. The resulting βCD-PAMAM-PEG-cRGD polymer was able to form stable and uniform nanoparticles (NPs) in aqueous solution.
View Article and Find Full Text PDF