Publications by authors named "Randi Rotjan"

Microplastics are fast-emerging as another potential threat to already globally declining seagrass ecosystems, but there is a paucity of in situ surveys showing their accumulations. Here, we surveyed multiple Zostera marina L. meadows in 2020 and 2021 across Massachusetts, USA, for microplastic contamination, as well as identified factors related to patterns of accumulation.

View Article and Find Full Text PDF

Coral reefs are increasingly ecologically destabilized across the globe due to climate change. Behavioural plasticity in corallivore behaviour and short-term trophic ecology in response to bleaching events may influence the extent and severity of coral bleaching and subsequent recovery potential, yet our understanding of these interactions remains unclear. Here, we investigated interactions between corallivory and coral bleaching during a severe high thermal event (10.

View Article and Find Full Text PDF

Since the publication of the Janeway's Pattern Recognition hypothesis in 1989, study of pathogen-associated molecular patterns (PAMPs) and their immuno-stimulatory activities has accelerated. Most studies in this area have been conducted in model organisms, which leaves many open questions about the universality of PAMP biology across living systems. Mammals have evolved multiple proteins that operate as receptors for the PAMP lipopolysaccharide (LPS) from Gram-negative bacteria, but LPS is not immuno-stimulatory in all eukaryotes.

View Article and Find Full Text PDF

The deep ocean is the largest ecosystem on the planet, constituting greater than 90% of all habitable space. Over three-quarters of countries globally have deep ocean within their Exclusive Economic Zones. While maintaining deep-ocean function is key to ensuring planetary health, deficiencies in knowledge and governance, as well as inequitable global capacity, challenge our ability to safeguard the resilience of this vast realm, leaving the fate of the deep ocean in the hands of a few.

View Article and Find Full Text PDF

Microplastics have been discovered ubiquitously in marine environments. While their accumulation is noted in seagrass ecosystems, little attention has yet been given to microplastic impacts on seagrass plants and their associated epiphytic and sediment communities. We initiate this discussion by synthesizing the potential impacts microplastics have on relevant seagrass plant, epiphyte, and sediment processes and functions.

View Article and Find Full Text PDF

The assumption of near-universal bacterial detection by pattern recognition receptors is a foundation of immunology. The limits of this pattern recognition concept, however, remain undefined. As a test of this hypothesis, we determined whether mammalian cells can recognize bacteria that they have never had the natural opportunity to encounter.

View Article and Find Full Text PDF

Reef-building coral taxa demonstrate considerable flexibility and diversity in reproduction and growth mechanisms. Corals take advantage of this flexibility to increase or decrease size through clonal expansion and loss of live tissue area (i.e.

View Article and Find Full Text PDF

Coral reefs are under increasingly severe threat from climate change and other anthropogenic stressors. Anomalously high seawater temperatures in particular are known to cause coral bleaching (loss of algal symbionts in the family Symbiodiniaceae), which frequently leads to coral mortality. Remote sensing of sea surface temperature (SST) has served as an invaluable tool for monitoring physical conditions that can lead to bleaching events over relatively large scales (e.

View Article and Find Full Text PDF

Existing marine bioregions covering the Pacific Ocean are conceptualised at spatial scales that are too broad for national marine spatial planning. Here, we developed the first combined oceanic and coastal marine bioregionalisation at national scales, delineating 262 deep-water and 103 reef-associated bioregions across the southwest Pacific. The deep-water bioregions were informed by thirty biophysical environmental variables.

View Article and Find Full Text PDF

The Phoenix Islands Protected Area (PIPA), one of the world's largest marine protected areas, represents 11% of the exclusive economic zone of the Republic of Kiribati, which earns much of its GDP by selling tuna fishing licenses to foreign nations. We have determined that PIPA is a spawning area for skipjack (Katsuwonus pelamis), bigeye (Thunnus obesus), and yellowfin (Thunnus albacares) tunas. Our approach included sampling larvae on cruises in 2015-2017 and using a biological-physical model to estimate spawning locations for collected larvae.

View Article and Find Full Text PDF

Microplastics (less than 5 mm) are a recognized threat to aquatic food webs because they are ingested at multiple trophic levels and may bioaccumulate. In urban coastal environments, high densities of microplastics may disrupt nutritional intake. However, behavioural dynamics and consequences of microparticle ingestion are still poorly understood.

View Article and Find Full Text PDF

For animals that harbor photosynthetic symbionts within their tissues, such as corals, the different relative contributions of autotrophy versus heterotrophy to organismal energetic requirements have direct impacts on fitness. This is especially true for facultatively symbiotic corals, where the balance between host-caught and symbiont-produced energy can be altered substantially to meet the variable demands of a shifting environment. In this study, we utilized a temperate coral-algal system (the northern star coral, and its photosynthetic endosymbiont, ) to explore the impacts of nutritional sourcing on the host's health and ability to regenerate experimentally excised polyps.

View Article and Find Full Text PDF

Seagrasses are among the most productive shallow water ecosystems, serving a diverse assemblage of fish and invertebrates. Tropical seagrass communities are dominated by the turtle grass Thalassia testudinum, whose wide, flattened blades host diverse epibiont communities. Amidst its epibionts, T.

View Article and Find Full Text PDF

Soft robotics is an emerging technology that has shown considerable promise in deep-sea marine biological applications. It is particularly useful in facilitating delicate interactions with fragile marine organisms. This study describes the shipboard design, 3D printing and integration of custom soft robotic manipulators for investigating and interacting with deep-sea organisms.

View Article and Find Full Text PDF

Background: Understanding the associations among corals, their photosynthetic zooxanthella symbionts (Symbiodinium), and coral-associated prokaryotic microbiomes is critical for predicting the fidelity and strength of coral symbioses in the face of growing environmental threats. Most coral-microbiome associations are beneficial, yet the mechanisms that determine the composition of the coral microbiome remain largely unknown. Here, we characterized microbiome diversity in the temperate, facultatively symbiotic coral Astrangia poculata at four seasonal time points near the northernmost limit of the species range.

View Article and Find Full Text PDF

The Republic of Kiribati's Phoenix Islands Protected Area (PIPA), located in the equatorial central Pacific, is the largest and deepest UNESCO World Heritage site on earth. Created in 2008, it was the first Marine Protected Area (MPA) of its kind (at the time of inception, the largest in the world) and includes eight low-lying islands, shallow coral reefs, submerged shallow and deep seamounts and extensive open-ocean and ocean floor habitat. Due to their isolation, the shallow reef habitats have been protected de facto from severe exploitation, though the surrounding waters have been continually fished for large pelagics and whales over many decades.

View Article and Find Full Text PDF

Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp.) respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994-2007), eleven years in the Exuma Cays, Bahamas (1995-2006), and four years in Puerto Morelos, Mexico (2003-2007).

View Article and Find Full Text PDF

Background: Fishery management has historically been an inexact and reactionary discipline, often taking action only after a critical stock suffers overfishing or collapse. The invertebrate ornamental fishery in the State of Florida, with increasing catches over a more diverse array of species, is poised for collapse. Current management is static and the lack of an adaptive strategy will not allow for adequate responses associated with managing this multi-species fishery.

View Article and Find Full Text PDF

Recent evidence suggests that deep-sea vestimentiferan tube worms acquire their endosymbiotic bacteria from the environment each generation; thus, free-living symbionts should exist. Here, free-living tube worm symbiont phylotypes were detected in vent seawater and in biofilms at multiple deep-sea vent habitats by PCR amplification, DNA sequence analysis, and fluorescence in situ hybridization. These findings support environmental transmission as a means of symbiont acquisition for deep-sea tube worms.

View Article and Find Full Text PDF