Pregravid obesity has been shown to disrupt the development of the offspring's immune system and increase susceptibility to infection. While the mechanisms underlying the impact of maternal obesity on fetal myeloid cells are emerging, the consequences for T cells remain poorly defined. In this study, we collected umbilical cord blood samples from infants born to lean mothers and mothers with obesity and profiled CD4 T cells using flow cytometry and single cell RNA sequencing at resting and following polyclonal stimulation.
View Article and Find Full Text PDFPre-pregnancy (pregravid) obesity has been linked to several adverse health outcomes for both mother and offspring. Complications during pregnancy include increased risk for gestational diabetes, hypertension, preeclampsia, placental abruption, and difficulties during delivery. Several studies suggest that these negative outcomes are mediated by heightened systemic inflammation as well as changes in placental development and function.
View Article and Find Full Text PDFPrepregnancy maternal obesity is associated with adverse outcomes for the offspring, including increased incidence of neonatal bacterial sepsis and necrotizing enterocolitis. We recently reported that umbilical cord blood (UCB) monocytes from babies born to obese mothers generate a reduced IL-6/TNF-α response to TLR 1/2 and 4 ligands compared to those collected from lean mothers. These observations suggest altered development of the offspring's immune system, which in turn results in dysregulated function.
View Article and Find Full Text PDFAging leads to a progressive decline in immune function commonly referred to as immune senescence, which results in increased incidence and severity of infection. In addition, older males experience a significant disruption in their levels of circulating androgens, notably testosterone and dehydroepiandrosterone (DHEA), which has been linked to sarcopenia, osteoporosis, cardiovascular disease, and diabetes. Since sex steroid levels modulate immune function, it is possible that the age-related decline in androgen levels can also affect immune senescence.
View Article and Find Full Text PDFLeukocyte-endothelial adhesion is a critical early step in chronic vascular inflammation associated with diabetes, emphysema, and aging. Importantly, these conditions are also marked by abnormal subendothelial matrix crosslinking (stiffness). Yet, whether and how abnormal matrix stiffness contributes to leukocyte-endothelial adhesion remains poorly understood.
View Article and Find Full Text PDFMol Cell Endocrinol
December 2015
In the United States, approximately 64% of women of childbearing age are either overweight or obese. Maternal obesity during pregnancy is associated with a greater risk for adverse maternal-fetal outcomes. Adverse health outcomes for the offspring can persist into adulthood, increasing the incidence of several chronic conditions including cardiovascular disease, diabetes, and asthma.
View Article and Find Full Text PDFBackground: Maternal obesity is one of the several key factors thought to modulate neonatal immune system development. Data from murine studies demonstrate worse outcomes in models of infection, autoimmunity, and allergic sensitization in offspring of obese dams. In humans, children born to obese mothers are at increased risk for asthma.
View Article and Find Full Text PDFAn extract of bark from the tropical rainforest plant Byrsonima crassifolia was screened for inhibition of diubiquitin formation by the human ubiquitin-conjugating enzyme E2-25K. Activity assays with both the full-length enzyme and a truncated, active catalytic UBC domain revealed that the extract contained inhibitory properties. Separation of the extract into individual components and additional screens identified vitexin as the active inhibitor.
View Article and Find Full Text PDFE2-25K is an ubiquitin-conjugating enzyme with the ability to synthesize Lys48-linked polyubiquitin chains. E2-25K and its homologs represent the only known E2 enzymes which contain a C-terminal ubiquitin-associated (UBA) domain as well as the conserved catalytic ubiquitin-conjugating (UBC) domain. As an additional non-covalent binding surface for ubiquitin, the UBA domain must provide some functional specialization.
View Article and Find Full Text PDFMotoneuron loss is a significant medical problem, capable of causing severe movement disorders and even death. We have previously demonstrated that partial depletion of motoneurons induces dendritic atrophy in remaining motoneurons, with a concomitant reduction in motor activation. Treatment of male rats with testosterone attenuates the regressive changes following partial motoneuron depletion.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
May 2009
The ubiquitin-conjugating enzyme E2-25K has been identified as a huntingtin (the key protein in Huntington's disease) interacting protein and has been shown to play a role in mediating the toxicity of Abeta, the principal protein involved in Alzheimer's disease pathogenesis. E2-25K is a dual-domain protein with an ubiquitin-associated (UBA) domain as well as a conserved ubiquitin-conjugating (UBC) domain which catalyzes the formation of a covalent bond between the C-terminal glycine of an ubiquitin molecule and the -amine of a lysine residue on the acceptor protein as part of the ubiquitin-proteasome pathway. The crystal structures of E2-25K M172A mutant protein at pH 6.
View Article and Find Full Text PDFOGL-20P(T)-358 is a novel 66 amino acid residue protein from the hyperthermophile Thermococcus thioreducens sp. nov., strain OGL-20PT, which was collected from the wall of the hydrothermal black smoker in the Rainbow Vent along the mid-Atlantic ridge.
View Article and Find Full Text PDFPreviously, we demonstrated that plasticity of frontal cortex is altered in aging rats: lesions of the nucleus basalis magnocellularis (NBM) produce larger declines in dendritic morphology in frontal cortex of aged rats compared to young adults. Cholinergic afferents from the NBM modulate glutamatergic transmission in neocortex, and glutamate is known to be involved in dendritic plasticity. To begin to identify possible mechanisms underlying age-related differences in plasticity after NBM lesion, we assessed the effect of cholinergic deafferentation on expression of the AMPA receptor subunit GluR1 in frontal cortex of young adult and aging rats.
View Article and Find Full Text PDFPreviously, we demonstrated that plasticity of frontal cortex is altered in aging rats: 3 months after surgery, excitotoxic lesions of the nucleus basalis magnocellularis (NBM) produce larger declines in dendritic morphology in frontal cortex of aged rats relative to young adults. To determine whether the differential effect of the lesion was due specifically to loss of cholinergic input from the NBM, we assessed dendritic morphology in frontal cortex after specific cholinergic depletion in young adult, middle-aged, and aged male rats. Rats received unilateral sham or 192-IgG-saporin lesions of the NBM.
View Article and Find Full Text PDFOptical designs often specify both surface form and centering (tilt and lateral displacement) tolerances on aspheric surfaces. In contrast to spherical surfaces, form and centering errors are coupled for aspheric surfaces. Current standards do not specify how to interpret such tolerances, and in particular they do not define the position of an aspheric surface that has form errors.
View Article and Find Full Text PDFGradient descent training of neural networks can be done in either a batch or on-line manner. A widely held myth in the neural network community is that batch training is as fast or faster and/or more 'correct' than on-line training because it supposedly uses a better approximation of the true gradient for its weight updates. This paper explains why batch training is almost always slower than on-line training-often orders of magnitude slower-especially on large training sets.
View Article and Find Full Text PDF