Publications by authors named "Randall S Alberte"

In a previous in vitro study, the standardized turmeric extract, HSS-888, showed strong inhibition of Aβ aggregation and secretion in vitro, indicating that HSS-888 might be therapeutically important. Therefore, in the present study, HSS-888 was evaluated in vivo using transgenic 'Alzheimer' mice (Tg2576) over-expressing Aβ protein. Following a six-month prevention period where mice received extract HSS-888 (5mg/mouse/day), tetrahydrocurcumin (THC) or a control through ingestion of customized animal feed pellets (0.

View Article and Find Full Text PDF

The present study explored the prophylactic and restorative benefits of cacao and red sage using both in vitro and in vivo models of stroke. For the in vitro study, we initially exposed primary rat cells to the established oxygen-glucose deprivation (OGD) stroke model followed by reperfusion under normoxic conditions, then added different cacao and sage concentrations to the cell culture media. Trypan blue cell viability results revealed specific cacao and sage dosages exerted significant therapeutic effects against OGD-induced cell death compared to cultured cells treated with extract vehicle.

View Article and Find Full Text PDF

Inhibition of beta-amyloid (A beta) accumulation and A beta fibril (fA beta) formation from A beta are attractive therapeutic targets for the treatment of Alzheimer's disease (AD). While previous studies have shown anti-amyloidogenic effects of curcumin in vitro and in vivo, no studies have examined optimized turmeric extracts enriched in curcuminoids or turmerones. Three standardized turmeric extracts, HSS-838, HSS-848, and HSS-888, were prepared with different chemical profiles to investigate their potential therapeutic benefits for AD.

View Article and Find Full Text PDF

A ionization technique in mass spectrometry called Direct Analysis in Real Time Mass Spectrometry (DART TOF-MS) coupled with a Direct Binding Assay was used to identify and characterize anti-viral components of an elderberry fruit (Sambucus nigra L.) extract without either derivatization or separation by standard chromatographic techniques. The elderberry extract inhibited Human Influenza A (H1N1) infection in vitro with an IC(50) value of 252+/-34 microg/mL.

View Article and Find Full Text PDF

Background: The development of antiviral drugs has provided crucial new means to mitigate or relieve the debilitating effects of many viral pathogens. Regular use of these drugs has led to generation of resistant strains, making the control of many viral infections very difficult, particularly in HIV-seropositive and AIDS patients. A rich source for the discovery of new HIV infection inhibitors has been, and continues to be, the 'mining' of the large diversity of compounds already available in nature, and specifically those from botanical extracts.

View Article and Find Full Text PDF

Rice bran, the outer bran and germ of the kernel and a by-product of rice milling, is rich in phytonutrients but has been underutilized because of lipid content instability. New methods for the processing of rice bran have yielded a stabilized form that is increasingly used in foods and dietary supplements. Recent studies have documented a role for stabilized rice bran (SRB) in treating diabetes and arthritis, although little is known of the bioactive compounds that impart these health benefits.

View Article and Find Full Text PDF

A nettle (Urtica dioica) extract shows in vitro inhibition of several key inflammatory events that cause the symptoms of seasonal allergies. These include the antagonist and negative agonist activity against the Histamine-1 (H(1)) receptor and the inhibition of mast cell tryptase preventing degranulation and release of a host of pro-inflammatory mediators that cause the symptoms of hay fevers. The nettle extract also inhibits prostaglandin formation through inhibition of Cyclooxygenase-1 (COX-1), Cyclooxygenase-2 (COX-2), and Hematopoietic Prostaglandin D(2) synthase (HPGDS), central enzymes in pro-inflammatory pathways.

View Article and Find Full Text PDF

ABSTRACT To explore the potential for nontoxic crop protection technologies based on the inhibition of fungal spore adhesion, we have tested the effect of synthetic zosteric acid (p-(sulfo-oxy) cinnamic acid), a naturally occurring phenolic acid in eelgrass (Zostera marina L.) plants, on spore adhesion and infection in two pathosystems: rice blast caused by Magnaporthe grisea and bean anthracnose caused by Colletotrichum lindemuthianum. We have shown that zosteric acid inhibits spore adhesion to model and host leaf surfaces and that any attached spores fail to develop appressoria, and consequently do not infect leaf cells.

View Article and Find Full Text PDF

The unusual appearance of a commensal eelgrass limpet [Tectura depicta (Berry)] from southern California at high density (up to 10 shoot) has coincided with the catastrophic decline of a subtidal Zostera marina L. meadow in Monterey Bay, California. Some commensal limpets graze the chloroplast-rich epidermis of eelgrass leaves, but were not known to affect seagrass growth or productivity.

View Article and Find Full Text PDF

Photosynthetic responses of the temperate seagrass, Zostera marina L., were examined by manipulations of photon flux density in an eelgrass bed in Great Harbor, Woods Hole, MA during August 1981. Sun reflectors and light shading screens were placed at shallow (1.

View Article and Find Full Text PDF