Publications by authors named "Randall Logan"

Many weakly basic amine-containing drugs are known to be extensively sequestered in acidic lysosomes by an ion trapping-type mechanism. The entrapment of drugs in lysosomes has been shown to influence drug activity, cancer cell selectivity, and pharmacokinetics and can cause the hyperaccumulation of various lipids associated with lysosomes. In this work, we have investigated the prolonged time-dependent effects of drugs on lysosomal properties.

View Article and Find Full Text PDF

Many weakly basic amine-containing compounds have a strong propensity to become highly concentrated in lysosomes by virtue of an ion-trapping-type mechanism; the substrates for this are referred to as lysosomotropic. We have previously shown that many lysosomotropic drugs can produce a significant expansion in the apparent volume of lysosomes, which can ultimately result in an intracellular distribution-based drug-drug interaction. In this study, we have systematically evaluated the physicochemical and structural features of weakly basic molecules that correlate with their ability to induce an expanded lysosomal volume phenotype (ELVP) in cultured human fibroblasts.

View Article and Find Full Text PDF

Many currently approved drugs possess weakly basic properties that make them substrates for extensive sequestration in acidic intracellular compartments such as lysosomes through an ion trapping-type mechanism. Lysosomotropic drugs often have unique pharmacokinetic properties that stem from the extensive entrapment in lysosomes, including an extremely large volume of distribution and a long half-life. Accordingly, pharmacokinetic drug-drug interactions can occur when one drug modifies lysosomal volume such that the degree of lysosomal sequestration of secondarily administered drugs is significantly altered.

View Article and Find Full Text PDF

Introduction: Many commercially available, weakly basic drugs have been shown to be lysosomotropic, meaning they are subject to extensive sequestration in lysosomes through an ion trapping-type mechanism. The extent of lysosomal trapping of a drug is an important therapeutic consideration because it can influence both activity and pharmacokinetic disposition. The administration of certain drugs can alter lysosomes such that their accumulation capacity for co-administered and/or secondarily administered drugs is altered.

View Article and Find Full Text PDF