Publications by authors named "Randall J Brezski"

Article Synopsis
  • * Researchers developed a novel monoclonal antibody (mAb) called "mAbtyrin" that targets multiple bacterial processes, enhancing its effectiveness against S. aureus.
  • * mAbtyrin showed improved protection in preclinical models, including better defense against infections and enhanced effectiveness when used with vancomycin, suggesting it could be a promising treatment for S. aureus-related diseases.
View Article and Find Full Text PDF

Background: Circulating APOL1 lyses trypanosomes, protecting against human sleeping sickness. Two common African gene variants of , G1 and G2, protect against infection by species of trypanosomes that resist wild-type APOL1. At the same time, the protection predisposes humans to CKD, an elegant example of balanced polymorphism.

View Article and Find Full Text PDF
Article Synopsis
  • - The study highlights the therapeutic potential of monoclonal antibodies that activate members of the tumor necrosis factor receptor superfamily (TNFRSF), which are vital for immune regulation and cell growth.
  • - A significant challenge in using these antibodies is their dependence on high-order clustering, which complicates their pharmacological activation and has hindered the development of approved drugs in this category.
  • - The research introduces a tetravalent biepitopic targeting method, demonstrating that it enhances the effectiveness of antibodies like OX40 and DR5, making them more potent in stimulating T cell activation without needing additional signals, thus filling a critical gap in TNFRSF therapeutic applications.
View Article and Find Full Text PDF

Anti-hinge antibodies (AHAs) are an autoantibody subclass that, following proteolytic cleavage, recognize cryptic epitopes exposed in the hinge regions of immunoglobulins (Igs) and do not bind to the intact Ig counterpart. AHAs have been postulated to exacerbate chronic inflammatory disorders such as inflammatory bowel disease and rheumatoid arthritis. On the other hand, AHAs may protect against invasive microbial pathogens and cancer.

View Article and Find Full Text PDF

Therapeutic monoclonal antibodies are among the most effective biotherapeutics to date. An important aspect of antibodies is their ability to bind antigen while at the same time recruit immune effector functions. The majority of approved recombinant monoclonal antibody therapies are of the human IgG1 subclass, which can engage both humoral and cellular components of the immune system.

View Article and Find Full Text PDF

The antibody Fc region regulates antibody cytotoxic activities and serum half-life. In a therapeutic context, however, the cytotoxic effector function of an antibody is often not desirable and can create safety liabilities by activating native host immune defenses against cells expressing the receptor antigens. Several amino acid changes in the Fc region have been reported to silence or reduce the effector function of antibodies.

View Article and Find Full Text PDF

Although much speculation has surrounded intestinally expressed FcRn as a means for systemic uptake of orally administered immunoglobulin G (IgG), this has not been validated in translational models beyond neonates or in FcRn-expressing cells in vitro. Recently, IgG1 intestinal infusion acutely in anesthetized cynomolgus resulted in detectable serum monoclonal antibody (mAb) levels. In this study, we show that IgG2 has greater protease resistance to intestinal enzymes in vitro and mice in vivo, due to protease resistance in the hinge region.

View Article and Find Full Text PDF

Non-small cell lung cancers (NSCLC) with activating EGFR mutations become resistant to tyrosine kinase inhibitors (TKI), often through second-site mutations in EGFR (T790M) and/or activation of the cMet pathway. We engineered a bispecific EGFR-cMet antibody (JNJ-61186372) with multiple mechanisms of action to inhibit primary/secondary EGFR mutations and the cMet pathway. JNJ-61186372 blocked ligand-induced phosphorylation of EGFR and cMet and inhibited phospho-ERK and phospho-AKT more potently than the combination of single receptor-binding antibodies.

View Article and Find Full Text PDF

Monoclonal antibody-based drugs continue to be one of the most rapidly growing classes of therapeutic molecules. At present, the majority of approved therapeutic antibodies are of the human IgG1 format, which can elicit immune effector functions (e.g.

View Article and Find Full Text PDF

Pathogens that induce acute and chronic infections, as well as certain cancers, employ numerous strategies to thwart host cellular and humoral immune defenses. One proposed evasion mechanism against humoral immunity is a localized expression of extracellular proteases that cleave the IgG hinge and disable host IgG functions. Host immunity appears to be prepared to counter such a proteolytic tactic by providing a group of autoantibodies, denoted anti-hinge antibodies that specifically bind to cleaved IgGs and provide compensating functional restoration in vitro.

View Article and Find Full Text PDF

Purpose: Studies have demonstrated that cancer-associated matrix metalloproteinases (MMP) can generate single peptide bond cleavages in the hinge region of immunoglobulin G1 (IgG1). This study investigated the cleavage of endogenous IgGs by MMPs in the tumor microenvironment and the consequences of the IgG hinge cleavage for humoral immunity.

Experimental Design: We investigated the occurrence of single peptide bond cleaved IgGs (scIgG) in tumor tissues and plasma samples collected from a cohort of breast cancer patients (n = 60).

View Article and Find Full Text PDF

Background & Aims: Many patients with inflammatory bowel disease (IBD) fail to respond to anti-tumor necrosis factor (TNF) agents such as infliximab and adalimumab, and etanercept is not effective for treatment of Crohn's disease. Activated matrix metalloproteinase 3 (MMP3) and MMP12, which are increased in inflamed mucosa of patients with IBD, have a wide range of substrates, including IgG1. TNF-neutralizing agents act in inflamed tissues; we investigated the effects of MMP3, MMP12, and mucosal proteins from IBD patients on these drugs.

View Article and Find Full Text PDF
Article Synopsis
  • Cytotoxic therapeutic monoclonal antibodies (mAbs) can kill target cells by activating immune responses through their Fc region, leading to processes like ADCC, ADCP, and CDC, alongside influencing the disease environment via ADCR.
  • The study highlights a new Fc engineering method that maintains the ability of mAbs to induce cell-killing functions (ADCC and ADCP) while significantly affecting the release of cytokines.
  • This research indicates that it's possible to separate macrophage-mediated cell-killing actions from cytokine release, showcasing the potential for targeted therapeutic strategies in cancer treatment.
View Article and Find Full Text PDF
Article Synopsis
  • Trastuzumab, a treatment for HER2-overexpressing breast cancer, is known to engage NK cells in antibody-dependent cell-mediated cytotoxicity (ADCC), but its role in antibody-dependent cellular phagocytosis (ADCP) has not been fully explored.
  • Research shows that macrophages can mediate ADCP and kill cancer cells when trastuzumab is present, with more macrophage infiltration linked to better treatment outcomes in mouse models.
  • The study identifies FcγRIV as crucial for trastuzumab's effectiveness, as its downregulation decreases cancer cell killing, while its upregulation through IFN-γ enhances ADCP activity, suggesting that activating macrophages may improve breast cancer therapy outcomes.
View Article and Find Full Text PDF
Article Synopsis
  • Primary and acquired resistance to antibody immunotherapies complicates cancer treatment, with the study highlighting that proteolytic inactivation of antibodies is a key factor in cancer immune evasion.
  • A specific cleavage in the IgG1 structure of trastuzumab impairs its effectiveness against cancer cells, particularly when the cells produce the IgG-degrading enzyme IdeS.
  • The researchers developed an antibody (mAb2095-2) that targets the cleaved antibodies, restoring their cancer-fighting abilities in lab and animal models, suggesting a new therapeutic approach to enhance the efficacy of existing antibody treatments.
View Article and Find Full Text PDF

We report a chimeric monoclonal antibody (mAb) directed to a neo-epitope that is exposed in the IgG lower hinge following proteolytic cleavage. The mAb, designated 2095-2, displays specificity for IdeS-generated F(ab')₂ fragments, but not for full-length IgG or for closely-related F(ab')₂ fragments generated with other proteases. A critical component of the specificity is provided by the C-terminal amino acid of the epitope corresponding to gly-236 in the IgG1 (also IgG4) hinge.

View Article and Find Full Text PDF

The functional role of human antihinge (HAH) autoantibodies in normal health and disease remains elusive, but recent evidence supports their role in the host response to IgG cleavage by proteases that are prevalent in certain disorders. Characterization and potential exploitation of these HAH antibodies has been hindered by the absence of monoclonal reagents. 2095-2 is a rabbit monoclonal antibody targeting the IdeS-cleaved hinge of human IgG1.

View Article and Find Full Text PDF

The annual European Antibody Congress (EAC) has traditionally been the key event for updates on critical scientific advances in the antibody field, and 2013 was no exception. Organized by Terrapinn, the well-attended meeting featured presentations on considerations for developing antibodies and antibody-like therapeutics, with separate tracks for antibody-drug conjugates, naked antibodies, and multispecific antibodies or protein scaffolds. The overall focus of the EAC was current approaches to enhance the functionality of therapeutic antibodies or other targeted proteins, with the ultimate goal being improvement of the safety and efficacy of the molecules as treatments for cancer, immune-mediated disorders and other diseases.

View Article and Find Full Text PDF

Molecularly engineered antibodies with fit-for-purpose properties will differentiate next generation antibody therapeutics from traditional IgG1 scaffolds. One requirement for engineering the most appropriate properties for a particular therapeutic area is an understanding of the intricacies of the target microenvironment in which the antibody is expected to function. Our group and others have demonstrated that proteases secreted by invasive tumors and pathological microorganisms are capable of cleaving human IgG1, the most commonly adopted isotype among monoclonal antibody therapeutics.

View Article and Find Full Text PDF

The Fc variant of IgG2, designated as IgG2σ, was engineered with V234A/G237A /P238S/H268A/V309L/A330S/P331S substitutions to eliminate affinity for Fcγ receptors and C1q complement protein and consequently, immune effector functions. IgG2σ was compared to other previously well-characterized Fc 'muted' variants, including aglycosylated IgG1, IgG2m4 (H268Q/V309L/A330S/P331S, changes to IgG4), and IgG4 ProAlaAla (S228P/L234A/L235A) in its capacity to bind FcγRs and activate various immune-stimulatory responses. In contrast to the previously characterized muted Fc variants, which retain selective FcγR binding and effector functions, IgG2σ shows no detectable binding to the Fcγ receptors in affinity and avidity measurements, nor any detectable antibody-dependent cytotoxicity, phagocytosis, complement activity, or Fc-mediated cytokine release.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) have been shown to promote tumor progression, and increased TAM infiltration often correlates with poor prognosis. However, questions remain regarding the phenotype of macrophages within the tumor and their role in mAb-dependent cytotoxicity. This study demonstrates that whereas TAMs have protumor properties, they maintain Fc-dependent anti-tumor function.

View Article and Find Full Text PDF

Introduction: Recent studies reported that human IgG antibodies are susceptible to specific proteolytic cleavage in their lower hinge region, and the hinge cleavage results in a loss of Fc-mediated effector functions. Trastuzumab is a humanized IgG1 therapeutic monoclonal antibody for the treatment of HER2-overexpressing breast cancers, and its mechanisms of action consist of inhibition of HER2 signaling and Fc-mediated antibody-dependent cellular cytotoxicity (ADCC). The objective of this study is to investigate the potential effect of proteinase hinge cleavage on the efficacy of trastuzumab using both a breast cancer cell culture method and an in vivo mouse xenograft tumor model.

View Article and Find Full Text PDF

Immunoglobulin G (IgG) antibodies are an integral part of the adaptive immune response that provide a direct link between humoral and cellular components of the immune system. Insights into relationships between the structure and function of human IgGs have prompted molecular engineering efforts to enhance or eliminate specific properties, such as Fc-mediated immune effector functions. Human IgGs have an N-glycosylation site at Asn297, located in the second heavy chain constant region (CH2).

View Article and Find Full Text PDF

The mammalian antibody repertoire comprises immunoglobulin (Ig) molecules of multiple isotypes and subclasses with varying functional properties. Among the four subclasses of the human IgG isotype, we found that IgG2 exhibits a particular resistance to human and bacterial proteases that readily cleave the IgG1 hinge region in vitro. Autoantibodies (IgGs) that recognize points of proteolytic cleavage in the IgG1 hinge are widespread in the healthy human population, suggesting that IgG1 fragmentation and the generation of cryptic antigens for host immune surveillance commonly occur in vivo.

View Article and Find Full Text PDF

Human anti-IgG hinge (HAH) autoantibodies constitute a class of immunoglobulins that recognize cryptic epitopes in the hinge region of antibodies exposed after proteolytic cleavage, but do not bind to the intact IgG counterpart. Detailed molecular characterizations of HAH autoantibodies suggest that they are, in some cases, distinct from natural autoantibodies that arise independent of antigenic challenge. Multiple studies have attempted to define the specificity of HAH autoantibodies, which were originally detected as binding to fragments possessing C-terminal amino acid residues exposed in either the upper or lower hinge regions of IgGs.

View Article and Find Full Text PDF