Publications by authors named "Randall H Brown"

The ability to rationally manipulate the transcriptional states of cells would be of great use in medicine and bioengineering. We have developed an algorithm, NetSurgeon, which uses genome-wide gene-regulatory networks to identify interventions that force a cell toward a desired expression state. We first validated NetSurgeon extensively on existing datasets.

View Article and Find Full Text PDF

Motivation: The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage.

View Article and Find Full Text PDF

Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution.

View Article and Find Full Text PDF

Background: This paper describes Pairagon+N-SCAN_EST, a gene annotation pipeline that uses only native alignments. For each expressed sequence it chooses the best genomic alignment. Systems like ENSEMBL and ExoGean rely on trans alignments, in which expressed sequences are aligned to the genomic loci of putative homologs.

View Article and Find Full Text PDF

Background: This study analyzes the predictions of a number of promoter predictors on the ENCODE regions of the human genome as part of the ENCODE Genome Annotation Assessment Project (EGASP). The systems analyzed operate on various principles and we assessed the effectiveness of different conceptual strategies used to correlate produced promoter predictions with the manually annotated 5' gene ends.

Results: The predictions were assessed relative to the manual HAVANA annotation of the 5' gene ends.

View Article and Find Full Text PDF

The retrainable, comparative gene predictor N-SCAN integrates multigenome modeling and 5' untranslated region (5' UTR) modeling. In this article, we evaluate N-SCAN's transcription-start site (TSS) and first exon predictions both computationally and experimentally. The computational results indicate that N-SCAN is more accurate than any of the other tools we tested at predicting the TSS and the complete first exon.

View Article and Find Full Text PDF

The genomes of clusters of related eukaryotes are now being sequenced at an increasing rate, creating a need for accurate, low-cost annotation of exon-intron structures. In this paper, we demonstrate that reverse transcription-polymerase chain reaction (RT-PCR) and direct sequencing based on predicted gene structures satisfy this need, at least for single-celled eukaryotes. The TWINSCAN gene prediction algorithm was adapted for the fungal pathogen Cryptococcus neoformans by using a precise model of intron lengths in combination with ungapped alignments between the genome sequences of the two closely related Cryptococcus varieties.

View Article and Find Full Text PDF