The Global ECT MRI Research Collaboration (GEMRIC) has collected clinical and neuroimaging data of patients treated with electroconvulsive therapy (ECT) from around the world. Results to date have focused on neuroimaging correlates of antidepressant response. GEMRIC sites have also collected longitudinal cognitive data.
View Article and Find Full Text PDFIntroduction: Major depressive disorder (MDD) is associated with dysfunctional reward processing, which involves functional circuitry of the habenula (Hb) and nucleus accumbens (NAc). Since ketamine elicits rapid antidepressant and antianhedonic effects in MDD, this study sought to investigate how serial ketamine infusion (SKI) treatment modulates static and dynamic functional connectivity (FC) in Hb and NAc functional networks.
Methods: MDD participants (n = 58, mean age = 40.
Glucagon-like peptide-1 receptor agonists are an emerging class of medications transforming the management of diabetes mellitus and obesity, two highly prevalent and chronic medical conditions associated with significant morbidity and posing serious public health concerns. Although generally well tolerated and relatively safe to use, case reports of patients taking these medications while undergoing elective procedures with general anesthesia describe a potential heightened risk of regurgitation and pulmonary aspiration of gastric contents, deriving from the delayed gastric emptying effect of these agents. Based on increased recognition of this risk, the American Society of Anesthesiologists convened a task force to review available data, resulting in the promulgation of a new procedural management guideline for patients on these drugs and undergoing elective procedures with general anesthesia.
View Article and Find Full Text PDFObjective: To meta-analyze clinical efficacy and safety of ketamine compared with other anesthetic agents in the course of electroconvulsive therapy (ECT) in major depressive episode (MDE).
Methods: PubMed/MEDLINE, Cochrane Library, Embase, GoogleScholar, and US and European trial registries were searched from inception through May 23, 2023, with no language limits. We included RCTs with (1) a diagnosis of MDE; (2) ECT intervention with ketamine and/or other anesthetic agents; and (3) measures included: depressive symptoms, cognitive performance, remission or response rates, and serious adverse events.
Dysfunctional reward processing in major depressive disorder (MDD) involves functional circuitry of the habenula (Hb) and nucleus accumbens (NAc). Ketamine elicits rapid antidepressant and alleviates anhedonia in MDD. To clarify how ketamine perturbs reward circuitry in MDD, we examined how serial ketamine infusions (SKI) modulate static and dynamic functional connectivity (FC) in Hb and NAc networks.
View Article and Find Full Text PDFNeurostimulation is a mainstream treatment option for major depression. Neuromodulation techniques apply repetitive magnetic or electrical stimulation to some neural target but significantly differ in their invasiveness, spatial selectivity, mechanism of action, and efficacy. Despite these differences, recent analyses of transcranial magnetic stimulation (TMS) and deep brain stimulation (DBS)-treated individuals converged on a common neural network that might have a causal role in treatment response.
View Article and Find Full Text PDFIntroduction: Subanesthetic ketamine is a rapidly acting antidepressant that has also been found to improve neurocognitive performance in adult patients with treatment resistant depression (TRD). Provisional evidence suggests that ketamine may induce change in hippocampal volume and that larger pre-treatment volumes might be related to positive clinical outcomes. Here, we examine the effects of serial ketamine treatment on hippocampal subfield volumes and relationships between pre-treatment subfield volumes and changes in depressive symptoms and neurocognitive performance.
View Article and Find Full Text PDFObjective: To meta-analyze clinical efficacy and safety of ketamine compared with other anesthetic agents in the course of electroconvulsive therapy (ECT) in major depressive episode (MDE).
Methods: PubMed/MEDLINE, Cochrane Library, Embase, GoogleScholar, and US and European trial registries were searched from inception through May 23, 2023, with no language limits. We included RCTs with (1) a diagnosis of MDE; (2) ECT intervention with ketamine and/or other anesthetic agents; and (3) measures included: depressive symptoms, cognitive performance, remission or response rates, and serious adverse events.
Background: Electroconvulsive therapy (ECT) is the most effective intervention for patients with treatment resistant depression. A clinical decision support tool could guide patient selection to improve the overall response rate and avoid ineffective treatments with adverse effects. Initial small-scale, monocenter studies indicate that both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) biomarkers may predict ECT outcome, but it is not known whether those results can generalize to data from other centers.
View Article and Find Full Text PDFBackground: Total sleep deprivation (TSD) transiently reverses depressive symptoms in a majority of patients with depression. How TSD modulates diffusion tensor imaging (DTI) measures of white matter (WM) microstructure, which may be linked with TSD's rapid antidepressant effects, remains uncharacterized.
Methods: Patients with depression ( = 48, mean age = 33, 26 women) completed diffusion-weighted imaging and Hamilton Depression Rating (HDRS) and rumination scales before and after >24 h of TSD.
Neurostimulation is a mainstream treatment option for major depression. Neuromodulation techniques apply repetitive magnetic or electrical stimulation to some neural target but significantly differ in their invasiveness, spatial selectivity, mechanism of action, and efficacy. Despite these differences, recent analyses of transcranial magnetic stimulation (TMS) and deep brain stimulation (DBS)-treated individuals converged on a common neural network that might have a causal role in treatment response.
View Article and Find Full Text PDFIntroduction: Ketamine treatment prompts a rapid antidepressant response in treatment-resistant depression (TRD). We performed an exploratory investigation of how ketamine treatment in TRD affects different cognitive domains and relates to antidepressant response.
Methods: Patients with TRD (N = 66; 30 M/35F; age = 39.
Ketamine produces fast-acting antidepressant effects in treatment resistant depression (TRD). Though prior studies report ketamine-related changes in brain activity in TRD, understanding of ketamine's effect on white matter (WM) microstructure remains limited. We thus sought to examine WM neuroplasticity and associated clinical improvements following serial ketamine infusion (SKI) in TRD.
View Article and Find Full Text PDFBackground: Electroconvulsive therapy (ECT) is effective for treatment-resistant depression and leads to short-term structural brain changes and decreases in the inflammatory response. However, little is known about how brain structure and inflammation relate to the heterogeneity of treatment response in the months following an index ECT course.
Methods: A naturalistic six-month study following an index ECT course included 20 subjects with treatment-resistant depression.
Purpose: Functional seizures (FS), also known as psychogenic nonepileptic seizures (PNES), are physical manifestations of acute or chronic psychological distress. Functional and structural neuroimaging have identified objective signs of this disorder. We evaluated whether magnetic resonance imaging (MRI) morphometry differed between patients with FS and clinically relevant comparison populations.
View Article and Find Full Text PDFBackground: Alterations in the peripheral inflammatory profile and white matter (WM) deterioration are frequent in Major Depressive Disorder (MDD). The present study applies free-water imaging to investigate the relationship between altered peripheral inflammation and WM microstructure and their predictive value in determining response to ketamine treatment in MDD.
Methods: Ten individuals with MDD underwent diffusion-weighted magnetic resonance imaging and a blood-draw before and 24 h after ketamine infusion.
Background: Ketamine is a rapidly-acting antidepressant treatment with robust response rates. Previous studies have reported that serial ketamine therapy modulates resting state functional connectivity in several large-scale networks, though it remains unknown whether variations in brain structure, function, and connectivity impact subsequent treatment success. We used a data-driven approach to determine whether pretreatment multimodal neuroimaging measures predict changes along symptom dimensions of depression following serial ketamine infusion.
View Article and Find Full Text PDF