Background: In vivo studies of high dose radiation-induced crypt and intestinal stem cell (ISC) loss and subsequent regeneration are typically restricted to 5-8 days after radiation due to high mortality and immune failure. This study aimed to develop murine radiation models of complete crypt loss that permit longer-term studies of ISC and crypt regeneration, repair and normalization of the intestinal epithelium.
Methods: In C57Bl/6J mice, a predetermined small intestinal segment was exteriorized and exposed to 14 Gy-radiation, while a lead shield protected the rest of the body from radiation.
Gastric cancer is the second leading cause of cancer mortality worldwide and is projected to rise to tenth in all-cause mortality in the near term. Early detection requires improved sensitivity and specificity of endoscopic imaging with novel methods. The objective of this study was to evaluate the utility of activatable molecular probes for the detection of gastric cancer both in vivo and ex vivo in a preclinical model.
View Article and Find Full Text PDFBackground: Injury and intestinal inflammation trigger wound healing responses that can restore mucosal architecture but if chronic, can promote intestinal fibrosis. Intestinal fibrosis is a major complication of Crohn's disease. The cellular and molecular basis of mucosal healing and intestinal fibrosis are not well defined and better understanding requires well characterized mouse models.
View Article and Find Full Text PDF