Publications by authors named "Randall E Baren"

Acrolein (C(3)H(4)O) molecular line parameters, including infrared (IR) absorption positions, strengths, and nitrogen broadened half-widths, must be determined since they are not included in the high resolution transmission (HITRAN) molecular absorption database of spectral lines. These parameters are required for developing a quantitative analytical method for measuring acrolein in a single puff of cigarette smoke using tunable diode laser absorption spectroscopy (TDLAS). The task is complex since acrolein has many highly overlapping infrared absorption lines in the room temperature spectrum and the cigarette smoke matrix contains thousands of compounds.

View Article and Find Full Text PDF

A compact, fast response, infrared spectrometer using four pulsed quantum cascade (QC) lasers has been applied to the analysis of gases in mainstream (MS) and sidestream (SS) cigarette smoke. QC lasers have many advantages over the traditional lead-salt tunable diode lasers, including near room temperature operation with thermoelectric cooling and single mode operation with improved long-term stability. The new instrument uses two 36 m, 0.

View Article and Find Full Text PDF

A technique has been developed for the determination of molecular parameters, including infrared absorption line positions, strengths, and nitrogen-broadened half-widths for 1,3-butadiene (C(4)H(6)) and propylene (C(3)H(6)). The parameters for these two molecules are required for quantitation using Tunable Diode Laser Absorption Spectroscopy (TDLAS). These molecules have populations of highly overlapping infrared absorption lines in their room temperature spectra.

View Article and Find Full Text PDF